cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A329684 Number of excursions of length n with Motzkin-steps forbidding all consecutive steps of length 2 except UD and HH.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Valerie Roitner, Nov 29 2019

Keywords

Comments

The Motzkin step set is U=(1,1), H=(1,0) and D=(1,-1). An excursion is a path starting at (0,0), ending on the x-axis and never crossing the x-axis, i.e., staying at nonnegative altitude.
This sequence is periodic with a pre-period of length 3 (namely 1, 1, 2) and a period of length 1 (namely 1).
Decimal expansion of 1009/9000. - Elmo R. Oliveira, Jun 16 2024

Examples

			a(2)=2 since UD and HH are allowed. For n different from 2, only the excursion H^n is allowed.
		

Crossrefs

Essentially the same as A294619, A261143 and A141044.

Programs

  • Mathematica
    PadRight[{1, 1, 2}, 100, 1] (* Paolo Xausa, Aug 28 2024 *)

Formula

G.f.: (1+t^2-t^3)/(1-t).
For n >= 0, a(2) = 2, otherwise a(n) = 1. - Elmo R. Oliveira, Jun 16 2024

A321125 T(n,k) = b(n+k) - (2*b(n)*b(k) + 1)*b(n*k) + b(n) + b(k) + 1, where b(n) = A154272(n+1), square array read by antidiagonals (n >= 0, k >= 0).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Let (A,B,d) denote the three-variable bracket polynomial for the two-bridge knot with Conway's notation C(n,k). Then T(n,k) is the leading coefficient of the reduced polynomial x*(1,1,x). In Kauffman's language, T(n,k) is the number of states of the two-bridge knot C(n,k) corresponding to the maximum number of Jordan curves.

Examples

			Square array begins:
  1, 1, 1, 1, 1, 1, ...
  1, 2, 1, 1, 1, 1, ...
  1, 1, 3, 2, 2, 2, ...
  1, 1, 2, 1, 1, 1, ...
  1, 1, 2, 1, 1, 1, ...
  1, 1, 2, 1, 1, 1, ...
  ...
		

References

  • Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.

Crossrefs

Programs

  • Mathematica
    b[n_] = If[n == 0 || n == 2, 1, 0];
    T[n_, k_] = b[n + k] - (2*b[n]*b[k] + 1)*b[n*k] + b[n] + b[k] + 1;
    Table[T[k, n - k], {n, 0, 12}, {k, 0, n}] // Flatten
  • Maxima
    b(n) := if n = 0 or n = 2 then 1 else 0$ /* A154272(n+1) */
    T(n, k) := b(n + k) - (2*b(n)*b(k) + 1)*b(n*k) + b(n) + b(k) + 1$
    create_list(T(k, n - k), n, 0, 12, k, 0, n);

Formula

T(n,0) = T(0,n) = 1, and T(n,k) = b(n+k) - b(n)*b(k) - b(n*k) + c(n)*c(k) for n >= 1, k >= 1, where b(n) = A154272(n+1) and c(n) = A294619(n).
T(n,1) = A300453(n+1,A321126(n,1)).
T(n,2) = A300454(n,A321126(n,2)).
T(n,n) = A321127(n,A004280(n+1)).
G.f.: (1 + (x - x^2)*y - (x - 3*x^2 + x^3)*y^2 - x^2*y^3)/((1 - x)*(1 - y)).
E.g.f.: ((x^2 + 2*exp(x))*exp(y) - x^2 + (2*x - x^2)*y - (1 + x - exp(x))*y^2)/2.

A373565 Expansion of x + 1/(1 - x).

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Peter Luschny, Jun 10 2024

Keywords

Crossrefs

Cf. A294619.

Programs

  • Mathematica
    CoefficientList[Series[x + 1/(1 - x), {x, 0, 105}], x] (* Michael De Vlieger, Jun 10 2024 *)

Formula

a(n) = [x^n] (x^2 - x - 1) / (x - 1).
E.g.f.: exp(x) + x. - Stefano Spezia, Jun 10 2024
Showing 1-3 of 3 results.