cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A321125 T(n,k) = b(n+k) - (2*b(n)*b(k) + 1)*b(n*k) + b(n) + b(k) + 1, where b(n) = A154272(n+1), square array read by antidiagonals (n >= 0, k >= 0).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Let (A,B,d) denote the three-variable bracket polynomial for the two-bridge knot with Conway's notation C(n,k). Then T(n,k) is the leading coefficient of the reduced polynomial x*(1,1,x). In Kauffman's language, T(n,k) is the number of states of the two-bridge knot C(n,k) corresponding to the maximum number of Jordan curves.

Examples

			Square array begins:
  1, 1, 1, 1, 1, 1, ...
  1, 2, 1, 1, 1, 1, ...
  1, 1, 3, 2, 2, 2, ...
  1, 1, 2, 1, 1, 1, ...
  1, 1, 2, 1, 1, 1, ...
  1, 1, 2, 1, 1, 1, ...
  ...
		

References

  • Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.

Crossrefs

Programs

  • Mathematica
    b[n_] = If[n == 0 || n == 2, 1, 0];
    T[n_, k_] = b[n + k] - (2*b[n]*b[k] + 1)*b[n*k] + b[n] + b[k] + 1;
    Table[T[k, n - k], {n, 0, 12}, {k, 0, n}] // Flatten
  • Maxima
    b(n) := if n = 0 or n = 2 then 1 else 0$ /* A154272(n+1) */
    T(n, k) := b(n + k) - (2*b(n)*b(k) + 1)*b(n*k) + b(n) + b(k) + 1$
    create_list(T(k, n - k), n, 0, 12, k, 0, n);

Formula

T(n,0) = T(0,n) = 1, and T(n,k) = b(n+k) - b(n)*b(k) - b(n*k) + c(n)*c(k) for n >= 1, k >= 1, where b(n) = A154272(n+1) and c(n) = A294619(n).
T(n,1) = A300453(n+1,A321126(n,1)).
T(n,2) = A300454(n,A321126(n,2)).
T(n,n) = A321127(n,A004280(n+1)).
G.f.: (1 + (x - x^2)*y - (x - 3*x^2 + x^3)*y^2 - x^2*y^3)/((1 - x)*(1 - y)).
E.g.f.: ((x^2 + 2*exp(x))*exp(y) - x^2 + (2*x - x^2)*y - (1 + x - exp(x))*y^2)/2.

A321126 T(n,k) = max(n + k - 1, n + 1, k + 1), square array read by antidiagonals (n >= 0, k >= 0).

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 4, 3, 3, 4, 5, 4, 3, 4, 5, 6, 5, 4, 4, 5, 6, 7, 6, 5, 5, 5, 6, 7, 8, 7, 6, 6, 6, 6, 7, 8, 9, 8, 7, 7, 7, 7, 7, 8, 9, 10, 9, 8, 8, 8, 8, 8, 8, 9, 10, 11, 10, 9, 9, 9, 9, 9, 9, 9, 10, 11, 12, 11, 10, 10, 10, 10, 10, 10, 10, 10, 11, 12, 13, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 13
Offset: 0

Views

Author

Keywords

Comments

T(n,k) - 1 is the maximum degree of d in the three-variable bracket polynomial (A,B,d) for the two-bridge knot with Conway's notation C(n,k). Hence, T(n,k) is the maximum number of Jordan curves that are obtained by splitting the crossings of such knot diagram.

Examples

			Square array begins:
    1,  2,  3,  4,  5,  6,  7,  8,  9, 10, ...
    2,  2,  3,  4,  5,  6,  7,  8,  9, 10, ...
    3,  3,  3,  4,  5,  6,  7,  8,  9, 10, ...
    4,  4,  4,  5,  6,  7,  8,  9, 10, 11, ...
    5,  5,  5,  6,  7,  8,  9, 10, 11, 12, ...
    6,  6,  6,  7,  8,  9, 10, 11, 12, 13, ...
    7,  7,  7,  8,  9, 10, 11, 12, 13, 14, ...
    8,  8,  8,  9, 10, 11, 12, 13, 14, 15, ...
    9,  9,  9, 10, 11, 12, 13, 14, 15, 16, ...
   10, 10, 10, 11, 12, 13, 14, 15, 16, 17, ...
  ...
		

References

  • Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.

Crossrefs

T(n,1) = degree of the (n+1)-th row polynomial in A300453.
T(n,k) = degree of the n-th row polynomials in A300454 and A321127, k = 2,n, respectively.

Programs

  • Mathematica
    Table[Max[k + 1, n - 1, n - k + 1], {n, 0, 10}, {k, 0, n}] // Flatten
  • Maxima
    create_list(max(k + 1, n - 1, n - k + 1), n, 0, 10, k, 0, n);

Formula

T(n,k) = T(k,n).
T(n,k) = A051125(n+1,k+1) for 0 <= k <= 2, n >= 0, and T(n,k) = A051125(n+1,k+1) + A003983(n-2,k-2) for k >= 3, n >= 3.
T(n,n) = A004280(n+1).
G.f.: (1 - (2*x - x^2)*y + (x - 2*x^2 + x^3)*y^2 + (x^2 - x^3)*y^3)/(((1 - x)*(1 - y))^2).
Showing 1-2 of 2 results.