A321125 T(n,k) = b(n+k) - (2*b(n)*b(k) + 1)*b(n*k) + b(n) + b(k) + 1, where b(n) = A154272(n+1), square array read by antidiagonals (n >= 0, k >= 0).
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 1, 2, 1, 1, 1, 1, ... 1, 1, 3, 2, 2, 2, ... 1, 1, 2, 1, 1, 1, ... 1, 1, 2, 1, 1, 1, ... 1, 1, 2, 1, 1, 1, ... ...
References
- Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened).
- Louis H. Kauffman, State models and the Jones polynomial, Topology Vol. 26 (1987), 395-407.
- Kelsey Lafferty, The three-variable bracket polynomial for reduced, alternating links, Rose-Hulman Undergraduate Mathematics Journal Vol. 14 (2013), 98-113.
- Matthew Overduin, The three-variable bracket polynomial for two-bridge knots, California State University REU, 2013.
- Franck Maminirina Ramaharo, Illustration of T(2,2)
- Franck Maminirina Ramaharo, Note on this sequence and related ones
- Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.
- Eric Weisstein's World of Mathematics, Bracket Polynomial
- Wikipedia, 2-bridge knot
- Wikipedia, Bracket polynomial
Programs
-
Mathematica
b[n_] = If[n == 0 || n == 2, 1, 0]; T[n_, k_] = b[n + k] - (2*b[n]*b[k] + 1)*b[n*k] + b[n] + b[k] + 1; Table[T[k, n - k], {n, 0, 12}, {k, 0, n}] // Flatten
-
Maxima
b(n) := if n = 0 or n = 2 then 1 else 0$ /* A154272(n+1) */ T(n, k) := b(n + k) - (2*b(n)*b(k) + 1)*b(n*k) + b(n) + b(k) + 1$ create_list(T(k, n - k), n, 0, 12, k, 0, n);
Formula
T(n,0) = T(0,n) = 1, and T(n,k) = b(n+k) - b(n)*b(k) - b(n*k) + c(n)*c(k) for n >= 1, k >= 1, where b(n) = A154272(n+1) and c(n) = A294619(n).
G.f.: (1 + (x - x^2)*y - (x - 3*x^2 + x^3)*y^2 - x^2*y^3)/((1 - x)*(1 - y)).
E.g.f.: ((x^2 + 2*exp(x))*exp(y) - x^2 + (2*x - x^2)*y - (1 + x - exp(x))*y^2)/2.
Comments