A005425 a(n) = 2*a(n-1) + (n-1)*a(n-2).
1, 2, 5, 14, 43, 142, 499, 1850, 7193, 29186, 123109, 538078, 2430355, 11317646, 54229907, 266906858, 1347262321, 6965034370, 36833528197, 199037675054, 1097912385851, 6176578272782, 35409316648435, 206703355298074, 1227820993510153, 7416522514174082
Offset: 0
Examples
From _Joerg Arndt_, Apr 18 2014: (Start) The a(3) = 14 words [d(1), d(2), d(3)] where d(k) is either =0, or =k (a fixed point), or the only value repeating a previous fixed point are (dots for zeros): # : word partial involution 01: [ . . . ] () 02: [ . . 3 ] (3) 03: [ . 2 . ] (2) 04: [ . 2 2 ] (2 3) 05: [ . 2 3 ] (2) (3) 06: [ 1 . . ] (1) 07: [ 1 . 1 ] (1 3) 08: [ 1 . 3 ] (1) (3) 09: [ 1 1 . ] (1 2) 10: [ 1 1 3 ] (1 2) (3) 11: [ 1 2 . ] (1) (2) 12: [ 1 2 1 ] (1 3) (2) 13: [ 1 2 2 ] (1) (2 3) 14: [ 1 2 3 ] (1) (2) (3) (End)
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- E. Bagno and Y. Cherniavsky, Congruence B-orbits and the Bruhat poset of involutions of the symmetric group, Discrete Math., 312 (1) (2012), pp. 1289-1299.
- C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy and D. Gouyou-Beauchamps, Generating Functions for Generating Trees, Discrete Mathematics 246(1-3), March 2002, pp. 29-55.
- A. Bingham and O. Ugurlu, Sects and lattice paths over the Lagrangian Grassmannian, arXiv preprint arXiv:1903.07229 [math.CO], 2019.
- P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Combinatorial field theories via boson normal ordering, arXiv:quant-ph/0405103, 2004-2006. The title of this paper in the arXiv was later changed to "Some useful combinatorial formulas for bosonic operators"
- P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Some useful combinatorial formulas for bosonic operators, J. Math. Phys. 46, 052110 (2005) (6 pages).
- R. Donaghey, Binomial self-inverse sequences and tangent coefficients, J. Combin. Theory, Series A, 21 (1976), 155-163.
- Adam M. Goyt and Lara K. Pudwell, Avoiding colored partitions of two elements in the pattern sense, arXiv preprint arXiv:1203.3786 [math.CO], 2012. - From _N. J. A. Sloane_, Sep 17 2012
- T. Halverson and M. Reeks, Gelfand Models for Diagram Algebras, arXiv preprint arXiv:1302.6150 [math.RT], 2013-2014.
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- Mikhail Khovanov, Victor Ostrik and Yakov Kononov, Two-dimensional topological theories, rational functions and their tensor envelopes, arXiv:2011.14758 [math.QA], 2020.
- T. Mansour, Restricted permutations by patterns of type 2-1, arXiv:math/0202219 [math.CO], 2002.
- D. Panyushev, On the orbits of a Borel subgroup in abelian ideals, arXiv preprint arXiv:1407.6857 [math.AG], 2014.
- Ville H. Pettersson, Enumerating Hamiltonian Cycles, The Electronic Journal of Combinatorics, Volume 21, Issue 4, 2014.
- K. Piejko, Extremal trees with respect to number of (A, B, 2C)-edge colourings, Journal of Applied Mathematics, Hindawi Publishing Corporation, Volume 2015, Article ID 463650, 5 pages.
- Steven V Sam and Andrew Snowden, Stability patterns in representation theory, arXiv:1302.5859 [math.RT], 2013-2015. See (1.3.4) p. 8.
- R. P. Stanley, On the enumeration of skew Young tableaux, Advances in Applied Mathematics 30 (2003) 283-294, (see corollary 2.4).
Crossrefs
Programs
-
Haskell
a005425 n = a005425_list !! n a005425_list = 1 : 2 : zipWith (+) (map (* 2) (tail a005425_list)) (zipWith (*) [1..] a005425_list) -- Reinhard Zumkeller, Dec 18 2011
-
Magma
a:=[2,5];[1] cat [n le 2 select a[n] else 2*Self(n-1) + (n-1)*Self(n-2):n in [1..30]]; // Marius A. Burtea, Oct 10 2019
-
Maple
with(orthopoly): seq((-I/sqrt(2))^n*H(n,I*sqrt(2)),n=0..25);
-
Mathematica
a[0] = 1; a[1] = 2; a[n_]:= 2a[n-1] + (n-1)*a[n-2]; Table[ a[n], {n, 0, 25}] (* or *) Range[0, 25]!CoefficientList[Series[Exp[2 x + x^2/2], {x, 0, 25}], x] (* or *) f[n_] := Sum[2^(n - 3k)n!/((n - 2k)!k!), {k, 0, n}]; Table[ f[n], {n, 0, 25}] (* or *) Table[(-I/Sqrt[2])^n*HermiteH[n, I*Sqrt[2]], {n, 0, 25}] (* Robert G. Wilson v, Nov 04 2005 *) RecurrenceTable[{a[0]==1,a[1]==2,a[n]==2a[n-1]+(n-1)a[n-2]},a,{n,30}] (* Harvey P. Dale, Sep 30 2015 *) a[n_] := 2^(n/2) Exp[- I n Pi/2] HypergeometricU[-n/2, 1/2, -2]; Table[a[n], {n, 0, 22}] (* Peter Luschny, May 30 2021 *)
-
Maxima
makelist((%i/sqrt(2))^n*hermite(n,-%i*sqrt(2)),n,0,12); /* Emanuele Munarini, Mar 02 2016 */
-
PARI
A005425(n)=sum(k=0,n\2,2^(n-3*k)*n!/(n-2*k)!/k!) \\ M. F. Hasler, Jan 13 2012
-
SageMath
[(-i/sqrt(2))^n*hermite(n, i*sqrt(2)) for n in range(41)] # G. C. Greubel, Nov 19 2022
Formula
E.g.f.: exp( 2*x + x^2/2 ).
a(n) = A027412(n+1)/2. - N. J. A. Sloane, Sep 13 2003
a(n) = Sum_{k=0..n} binomial(n, k)*A000085(n-k). - Philippe Deléham, Mar 07 2004
a(n) = (-i/sqrt(2))^n*H(n, i*sqrt(2)), where H(n, x) is the n-th Hermite polynomial and i = sqrt(-1). - Emeric Deutsch, Nov 24 2004
a(n) = Sum_{k=0..floor(n/2)} 2^{n-3*k}*n!/((n-2*k)!*k!). - Huajun Huang (hua_jun(AT)hotmail.com), Oct 10 2005
For all n, a(n) = [M_n]1,1 = [M_n]_2,1, where M_n = A_n * A_n-1 * ... * A_1, being A_k the matrix A_k = [1, k;1, 1]. - _Simone Severini, Apr 25 2007
a(n) = (1/sqrt(2*Pi))*Integral_{x=-infinity..infinity} exp(-x^2/2)*(x+2)^n. - Groux Roland, Mar 14 2011
G.f.: 1/(1-2x-x^2/(1-2x-2x^2/(1-2x-3x^2/(1-2x-4x^2/(1-... (continued fraction).
E.g.f.: G(0) where G(k) = 1 + x*(4+x)/(4*k + 2 - x*(4+x)*(4*k+2)/(x*(4+x) + 4*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 17 2011
a(n) ~ exp(2*sqrt(n) - n/2 - 1)*n^(n/2)/sqrt(2). - Vaclav Kotesovec, Oct 08 2012
a(n) = 2^(n/2)*exp(-i*n*Pi/2)*KummerU(-n/2, 1/2, -2). - Peter Luschny, May 30 2021
Extensions
Recurrence and formula corrected by Olivier Gérard, Oct 15 1997
Comments