cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A128227 Right border (1,1,1,...) added to A002260.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 4, 1, 1, 2, 3, 4, 5, 1, 1, 2, 3, 4, 5, 6, 1, 1, 2, 3, 4, 5, 6, 7, 1, 1, 2, 3, 4, 5, 6, 7, 8, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1
Offset: 0

Views

Author

Gary W. Adamson, Feb 19 2007

Keywords

Comments

Row sums = A000124: (1, 2, 4, 7, 11, 16, ...). n* each term of the triangle gives A128228, having row sums A006000: (1, 4, 12, 28, 55, ...).
Eigensequence of the triangle = A005425: (1, 2, 5, 14, 43, ...). - Gary W. Adamson, Aug 27 2010
From Franck Maminirina Ramaharo, Aug 25 2018: (Start)
T(n,k) is the number of binary words of length n having k letters 1 such that no 1's lie between any pair of 0's.
Let n lines with equations y = (i - 1)*x - (i - 1)^2, i = 1..n, be drawn in the Cartesian plane. For each line, call the half plane containing the point (-1,1) the upper half plane and the other half the lower half-plane. Then T(n,k) is the number of regions that are the intersections of k upper half-planes and n-k lower half-planes. Here, T(0,0) = 1 corresponds to the plane itself. A region obtained from this arrangement of lines can be associated with a length n binary word such that the i-th letter indicates whether the region is located at the i-th upper half-plane (letter 1) or at the lower half-plane (letter 0).
(End)

Examples

			First few rows of the triangle are:
1;
1, 1;
1, 2, 1;
1, 2, 3, 1;
1, 2, 3, 4, 1;
1, 2, 3, 4, 5, 1;
1, 2, 3, 4, 5, 6, 1;
1, 2, 3, 4, 5, 6, 7, 1;
1, 2, 3, 4, 5, 6, 7, 8, 1;
...
From _Franck Maminirina Ramaharo_, Aug 25 2018: (Start)
For n = 5, the binary words are
(k = 0) 00000;
(k = 1) 10000, 00001;
(k = 2) 11000, 10001, 00011;
(k = 3) 11100, 11001, 10011, 00111;
(k = 4) 11110, 11101, 11011, 10111, 01111;
(k = 5) 11111.
(End)
		

Crossrefs

Programs

  • Mathematica
    (* first n rows of the triangle *)
    a128227[n_] := Table[If[r==q, 1, q], {r, 1, n}, {q, 1, r}]
    Flatten[a128227[13]] (* data *)
    TableForm[a128227[5]] (* triangle *)
    (* Hartmut F. W. Hoft, Jun 10 2017 *)
  • Maxima
    T(n, k) := if n = k then 1 else k + 1$
    for n:0 thru 10 do print(makelist(T(n, k), k, 0, n)); /* Franck Maminirina Ramaharo, Aug 25 2018 */
  • Python
    def T(n, k): return 1 if n==k else k
    for n in range(1, 11): print([T(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, Jun 10 2017
    
  • Python
    from math import comb, isqrt
    def A128227(n): return n-comb(r:=(m:=isqrt(k:=n+1<<1))+(k>m*(m+1))+1,2)+(2 if k==m*(m+1) else r) # Chai Wah Wu, Nov 09 2024
    

Formula

"1" added to each row of "start counting again": (1; 1,2; 1,2,3,...) such that a(1) = 1, giving: (1; 1,1; 1,2,1;...).
T(n,k) = k if 1<=kHartmut F. W. Hoft, Jun 10 2017
From Franck Maminirina Ramaharo, Aug 25 2018: (Start)
The n-th row are the coefficients in the expansion of ((x^2 + (n - 2)*x - n)*x^n + 1)/(x - 1)^2.
G.f. for column k: ((k*x + 1)*x^k)/(1 - x). (End)

A319840 Table read by antidiagonals: T(n, k) is the number of elements on the perimeter of an n X k matrix.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 4, 6, 6, 4, 5, 8, 8, 8, 5, 6, 10, 10, 10, 10, 6, 7, 12, 12, 12, 12, 12, 7, 8, 14, 14, 14, 14, 14, 14, 8, 9, 16, 16, 16, 16, 16, 16, 16, 9, 10, 18, 18, 18, 18, 18, 18, 18, 18, 10, 11, 20, 20, 20, 20, 20, 20, 20, 20, 20, 11, 12, 22, 22, 22
Offset: 1

Views

Author

Stefano Spezia, Sep 29 2018

Keywords

Comments

The table T(n, k) can be indifferently read by ascending or descending antidiagonals.

Examples

			The table T starts in row n=1 with columns k >= 1 as:
   1   2   3   4   5   6   7   8   9  10 ...
   2   4   6   8  10  12  14  16  18  20 ...
   3   6   8  10  12  14  16  18  20  22 ...
   4   8  10  12  14  16  18  20  22  24 ...
   5  10  12  14  16  18  20  22  24  26 ...
   6  12  14  16  18  20  22  24  26  28 ...
   7  14  16  18  20  22  24  26  28  30 ...
   8  16  18  20  22  24  26  28  30  32 ...
   9  18  20  22  24  26  28  30  32  34 ...
  10  20  22  24  26  28  30  32  34  36 ...
  ...
The triangle X(n, k) begins
  n\k|   1   2   3   4   5   6   7   8   9  10
  ---+----------------------------------------
   1 |   1
   2 |   2   2
   3 |   3   4   3
   4 |   4   6   6   4
   5 |   5   8   8   8   5
   6 |   6  10  10  10  10   6
   7 |   7  12  12  12  12  12   7
   8 |   8  14  14  14  14  14  14   8
   9 |   9  16  16  16  16  16  16  16   9
  10 |  10  18  18  18  18  18  18  18  18  10
  ...
		

Crossrefs

Cf. A000027 (1st column/right diagonal of the triangle or 1st row/column of the table), A005843 (2nd row/column of the table, or 2nd column of the triangle), A008574 (main diagonal of the table), A005893 (row sum of the triangle).
Cf. A003991 (the number of elements in an n X k matrix).

Programs

  • Magma
    [[k lt 3 or n+1-k lt 3 select (n+1-k)*k else 2*n-2: k in [1..n]]: n in [1..10]]; // triangle output
    
  • Maple
    a := (n, k) -> (n+1-k)*k-(n-1-k)*(k-2)*(limit(Heaviside(min(n+1-k, k)-3+x), x = 0, right)): seq(seq(a(n, k), k = 1 .. n), n = 1 .. 20)
  • Mathematica
    Flatten[Table[(n + 1 - k) k-(n-1-k)*(k-2)Limit[HeavisideTheta[Min[n+1-k,k]-3+x], x->0, Direction->"FromAbove"  ],{n, 20}, {k, n}]] (* or *)
    f[n_] := Table[SeriesCoefficient[(x y - x^3 y^3)/((-1 + x)^2 (-1 + y)^2), {x, 0, i + 1 - j}, {y, 0, j}], {i, n, n}, {j, 1, n}]; Flatten[Array[f,20]]
  • PARI
    T(n, k) = if ((n+1-k<3) || (k<3), (n+1-k)*k, 2*n-2);
    tabl(nn) = for(i=1, nn, for(j=1, i, print1(T(i, j), ", ")); print);
    tabl(20) \\ triangle output

Formula

T(n, k) = n*k - (n - 2)*(k - 2)*H(min(n, k) - 3), where H(x) is the Heaviside step function, taking H(0) = 1.
G.f. as rectangular array: (x*y - x^3*y^3)/((-1 + x)^2*(-1 + y)^2).
X(n, k) = A131821(n, k)*A318274(n - 1, k)*A154325(n - 1, k). - Franck Maminirina Ramaharo, Nov 18 2018
Showing 1-2 of 2 results.