A000583
Fourth powers: a(n) = n^4.
Original entry on oeis.org
0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, 14641, 20736, 28561, 38416, 50625, 65536, 83521, 104976, 130321, 160000, 194481, 234256, 279841, 331776, 390625, 456976, 531441, 614656, 707281, 810000, 923521, 1048576, 1185921
Offset: 0
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 64.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 255; 2nd. ed., p. 269. Worpitzky's identity (6.37).
- Dov Juzuk, Curiosa 56: An interesting observation, Scripta Mathematica 6 (1939), 218.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Page 47.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Henry Bottomley, Illustration of initial terms
- Henry Bottomley, Some Smarandache-type multiplicative sequences
- Ralph Greenberg, Math for Poets.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- Sameen Ahmed Khan, Sums of the powers of reciprocals of polygonal numbers, Int'l J. of Appl. Math. (2020) Vol. 33, No. 2, 265-282.
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., Vol. 131, No. 1 (2002), pp. 65-75.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Kenneth A. Ross, First Digits of Squares and Cubes, Math. Mag. 85 (2012) 36-42.
- Eric Weisstein's World of Mathematics, Biquadratic Number.
- Index entries for "core" sequences
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
- Index entries for sequences related to Benford's law
-
a000583 = (^ 4)
a000583_list = scanl (+) 0 a005917_list
-- Reinhard Zumkeller, Nov 13 2014, Nov 11 2012
-
[n^4 : n in [0..50]]; // Wesley Ivan Hurt, Sep 05 2014
-
A000583 := n->n^4: seq(A000583(n), n=0..50);
A000583:=-(z+1)*(z**2+10*z+1)/(z-1)**5; # Simon Plouffe in his 1992 dissertation; gives sequence without initial zero
with (combinat):seq(fibonacci(3, n^2)-1, n=0..33); # Zerinvary Lajos, May 25 2008
-
Range[0,100]^4 (* Vladimir Joseph Stephan Orlovsky, Mar 14 2011 *)
-
makelist(n^4,n,0,30); /* Martin Ettl, Nov 12 2012 */
-
A000583(n) = n^4 \\ Michael B. Porter, Nov 09 2009
-
def a(n): return n**4
print([a(n) for n in range(34)]) # Michael S. Branicky, Nov 10 2022
A001844
Centered square numbers: a(n) = 2*n*(n+1)+1. Sums of two consecutive squares. Also, consider all Pythagorean triples (X, Y, Z=Y+1) ordered by increasing Z; then sequence gives Z values.
Original entry on oeis.org
1, 5, 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613, 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861, 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785, 3961, 4141, 4325, 4513
Offset: 0
G.f.: 1 + 5*x + 13*x^2 + 25*x^3 + 41*x^4 + 61*x^5 + 85*x^6 + 113*x^7 + 145*x^8 + ...
The first few triples are (1,0,1), (3,4,5), (5,12,13), (7,24,25), ...
The first four such partitions, corresponding to n = 0,1,2,3, i.e., to a(n) = 1,5,13,25, are 1, 3+1+1, 5+3+3+1+1, 7+5+5+3+3+1+1. - _Augustine O. Munagi_, Dec 18 2008
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 3.
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, p. 125, 1964.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 50.
- Pertti Lounesto, Clifford Algebras and Spinors, second edition, Cambridge University Press, 2001.
- S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 483.
- Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Travers et al., The Mysterious Lost Proof, Using Advanced Algebra, (1976), pp. 27.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- M. Ahmed, J. De Loera and R. Hemmecke, Polyhedral Cones of Magic Cubes and Squares, arXiv:math/0201108 [math.CO], 2002.
- U. Alfred, n and n+1 consecutive integers with equal sums of squares, Math. Mag., 35 (1962), 155-164.
- Bela Bajnok, Additive Combinatorics: A Menu of Research Problems, arXiv:1705.07444 [math.NT], May 2017. See Section 2.3.
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Matthias Beck, Moshe Cohen, Jessica Cuomo, and Paul Gribelyuk, The number of "magic" squares and hypercubes, arXiv:math/0201013 [math.CO], 2002-2005.
- Arthur T. Benjamin and Doron Zeilberger, Pythagorean Primes and Palindromic Continued Fractions, Electronic Journal of Combinatorial Number Theory, 5(1) 2005, #A30.
- J. A. De Loera, D. C. Haws and M. Koppe, Ehrhart Polynomials of Matroid Polytopes and Polymatroids, arXiv:0710.4346 [math.CO], 2007; Discrete Comput. Geom., 42 (2009), 670-702.
- FiveThirtyEight, "Riddler Express" paper cutting problem and solution, Jan 28 2022.
- D. C. Haws, Matroids [Broken link, Oct 30 2017]
- D. C. Haws, Matroids [Copy on website of Matthias Koeppe]
- D. C. Haws, Matroids [Cached copy, pdf file only]
- L. Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co, London, 1950, pp. 22 and 36.
- Milan Janjic, Two Enumerative Functions. [Broken link; WayBackMachine archive.]
- Milan Janjic, On a class of polynomials with integer coefficients, JIS 11 (2008) 08.5.
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
- Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.
- Ron Knott, Pythagorean Triples and Online Calculators.
- G. Kreweras, Sur les hiérarchies de segments, Cahiers Bureau Universitaire Recherche Opérationnelle, Cahier 20, Inst. Statistiques, Univ. Paris, 1973.
- G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
- A. O. Munagi, Pairing conjugate partitions by residue classes, Discrete Math., 308 (2008), 2492-2501.
- Mitchell Paukner, Lucy Pepin, Manda Riehl, and Jarred Wieser, Pattern Avoidance in Task-Precedence Posets, arXiv:1511.00080 [math.CO], 2015-2016.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- John A. Jr. Rochowicz, Harmonic Numbers: Insights, Approximations and Applications, Spreadsheets in Education (eJSiE), 2015, Vol. 8: Iss. 2, Article 4.
- Amelia Carolina Sparavigna, Groupoid of OEIS A001844 Numbers (centered square numbers), Politecnico di Torino, Italy (2019).
- R. G. Stanton and D. D. Cowan, Note on a "square" functional equation, SIAM Rev., 12 (1970), 277-279.
- David James Sycamore, Triangular array
- Leo Tavares, Illustration: Diamond Rows
- B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
- Eric Weisstein's World of Mathematics, Centered Polygonal Number, Centered Square Number, Diamond, Pythagorean Triple, and von Neumann Neighborhood.
- Index entries for sequences related to centered polygonal numbers
- Index entries for two-way infinite sequences.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
- Nicolay Avilov, Graphical representation of the sequence members
Cf.
A069894,
A000217,
A000290,
A001263,
A001788,
A001845,
A002061,
A002144,
A003215,
A005448,
A005891,
A005917,
A008844 (square terms),
A027862 (prime terms),
A048395,
A051890,
A056106,
A101096,
A127876,
A128064,
A132778,
A147973,
A153869,
A240876,
A251599,
A000982,
A080827.
Row n=2 (or column k=2) of
A008288.
-
a001844 n = 2 * n * (n + 1) + 1
a001844_list = zipWith (+) a000290_list $ tail a000290_list
-- Reinhard Zumkeller, Dec 04 2012
-
[2*n^2 + 2*n + 1: n in [0..50]]; // Vincenzo Librandi, Jan 19 2013
-
[n: n in [0..4400] | IsSquare(2*n-1)]; // Juri-Stepan Gerasimov, Apr 06 2016
-
A001844:=-(z+1)**2/(z-1)**3; # Simon Plouffe in his 1992 dissertation
-
Table[2n(n + 1) + 1, {n, 0, 50}]
FoldList[#1 + #2 &, 1, 4 Range@ 50] (* Robert G. Wilson v, Feb 02 2011 *)
maxn := 47; Flatten[Table[SeriesCoefficient[Series[(n + (n - 1)*x)/(1 - x)^2, {x, 0, maxn}], k], {n, maxn}, {k, n - 1, n - 1}]] (* L. Edson Jeffery, Aug 24 2014 *)
CoefficientList[ Series[-(x^2 + 2x + 1)/(x - 1)^3, {x, 0, 48}], x] (* or *)
LinearRecurrence[{3, -3, 1}, {1, 5, 13}, 48] (* Robert G. Wilson v, Aug 01 2018 *)
Total/@Partition[Range[0,50]^2,2,1] (* Harvey P. Dale, Dec 05 2020 *)
Table[ j! Coefficient[Series[Exp[x]*(1 + 4*x + 2*x^2), {x, 0, 20}], x,
j], {j, 0, 20}] (* Nikolaos Pantelidis, Feb 07 2023 *)
-
{a(n) = 2*n*(n+1) + 1};
-
x='x+O('x^200); Vec((1+x)^2/(1-x)^3) \\ Altug Alkan, Mar 23 2016
-
print([2*n*(n+1)+1 for n in range(48)]) # Michael S. Branicky, Jan 05 2021
-
[i**2 + (i + 1)**2 for i in range(46)] # Zerinvary Lajos, Jun 27 2008
A016754
Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers.
Original entry on oeis.org
1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1849, 2025, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 3969, 4225, 4489, 4761, 5041, 5329, 5625, 5929, 6241, 6561, 6889, 7225, 7569, 7921, 8281, 8649, 9025
Offset: 0
- L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 586.
- Paolo Xausa, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe).
- Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Classes of Gap Balancing Numbers, arXiv:1810.07895 [math.NT], 2018.
- Bruce C. Berndt and Ken Ono, Ramanujan's unpublished manuscript on the partition and tau functions with proofs and commentary, Séminaire Lotharingien de Combinatoire, B42c (1999), 63 pp.
- John Elias, Illustration: 8-fold Square Progression of Ulam's Spiral.
- Milan Janjic, Two Enumerative Functions.
- Scientific American, Cover of the March 1964 issue.
- Amelia Carolina Sparavigna, Groupoids of OEIS A002378 and A016754 Numbers (oblong and odd square numbers), Politecnico di Torino (Italy, 2019).
- Leo Tavares, Illustration: Diamond Triangles.
- Leo Tavares, Illustration: Diamond Stars.
- Eric Weisstein's World of Mathematics, Moore Neighborhood.
- R. Yin, J. Mu, and T. Komatsu, The p-Frobenius Number for the Triple of the Generalized Star Numbers, Preprints 2024, 2024072280. See p. 2.
- Index entries for sequences related to centered polygonal numbers.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf.
A000290,
A000384,
A001263,
A001539,
A001844,
A003881,
A005408,
A006752,
A014105,
A016742,
A016802,
A016814,
A016826,
A016838,
A033996,
A046092,
A060300,
A138393,
A167661,
A167700.
-
a016754 n = a016754_list !! n
a016754_list = scanl (+) 1 $ tail a008590_list
-- Reinhard Zumkeller, Apr 02 2012
-
[n^2: n in [1..100 by 2]]; // Vincenzo Librandi, Jan 03 2017
-
Range[1, 100, 2]^2 (* Paolo Xausa, Feb 13 2025 *)
-
A016754(n):=(n+n+1)^2$
makelist(A016754(n),n,0,20); /* Martin Ettl, Nov 12 2012 */
-
A016754(n)=(n<<1+1)^2 \\ Charles R Greathouse IV, Jun 16 2011, corrected and edited by M. F. Hasler, Apr 11 2023
-
def A016754(n): return ((n<<1)|1)**2 # Chai Wah Wu, Jul 06 2023
A006003
a(n) = n*(n^2 + 1)/2.
Original entry on oeis.org
0, 1, 5, 15, 34, 65, 111, 175, 260, 369, 505, 671, 870, 1105, 1379, 1695, 2056, 2465, 2925, 3439, 4010, 4641, 5335, 6095, 6924, 7825, 8801, 9855, 10990, 12209, 13515, 14911, 16400, 17985, 19669, 21455, 23346, 25345, 27455, 29679, 32020, 34481, 37065, 39775
Offset: 0
G.f. = x + 5*x^2 + 15*x^3 + 34*x^4 + 65*x^5 + 111*x^6 + 175*x^7 + 260*x^8 + ...
For a(2)=5, the five tetrahedra have faces AAAA, AAAB, AABB, ABBB, and BBBB with colors A and B. - _Robert A. Russell_, Jan 31 2020
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 15, p. 5, Ellipses, Paris 2008.
- F.-J. Papp, Colloquium Talk, Department of Mathematics, University of Michigan-Dearborn, March 6, 2005.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- J. D. Bell, A translation of Leonhard Euler's "De Quadratis Magicis", E795, arXiv:math/0408230 [math.CO], 2004-2005.
- James Grime and Brady Haran, Magic Hexagon, Numberphile video (2014).
- Milan Janjic, Two Enumerative Functions.
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - _N. J. A. Sloane_, Feb 13 2013
- Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, Journal of Integer Sequences, 17 (2014), Article 14.3.5. - _Felix Fröhlich_, Oct 11 2016
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Ashish Kumar Pandey and Brajesh Kumar Sharma, A Note On Magic Squares And Magic Constants, Appl. Math. E-Notes (2023) Vol. 23, Art. No. 53, 577-582. See p. 577.
- A. J. Turner and J. F. Miller, Recurrent Cartesian Genetic Programming Applied to Famous Mathematical Sequences, preprint, Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation.
- Eric Weisstein's World of Mathematics, Magic Constant.
- Wikipedia, Floyd's triangle. - _Paul Muljadi_, Jan 25 2010
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
- Index entries for sequences related to magic squares.
- Index to sequences related to polygonal numbers.
(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527, this sequence,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
Antidiagonal sums of array in
A000027. Row sums of the triangular view of
A000027.
Other polyhedron colorings:
A337898 (cube faces, octahedron vertices),
A337897 (octahedron faces, cube vertices),
A337962 (dodecahedron faces, icosahedron vertices),
A337960 (icosahedron faces, dodecahedron vertices).
Row 3 of
A325001 (simplex vertices and facets) and
A337886 (simplex faces and peaks).
-
a_n:=List([0..nmax], n->n*(n^2 + 1)/2); # Stefano Spezia, Aug 12 2018
-
a006003 n = n * (n ^ 2 + 1) `div` 2
a006003_list = scanl (+) 0 a005448_list
-- Reinhard Zumkeller, Jun 20 2013
-
% Also works with FreeMat.
for(n=0:nmax); tm=n*(n^2 + 1)/2; fprintf('%d\t%0.f\n', n, tm); end
% Stefano Spezia, Aug 12 2018
-
[n*(n^2 + 1)/2 : n in [0..50]]; // Wesley Ivan Hurt, Sep 11 2015
-
[Binomial(n,3)+Binomial(n-1,3)+Binomial(n-2,3): n in [2..60]]; // Vincenzo Librandi, Sep 12 2015
-
Table[ n(n^2 + 1)/2, {n, 0, 45}]
LinearRecurrence[{4,-6,4,-1}, {0,1,5,15},50] (* Harvey P. Dale, May 16 2012 *)
CoefficientList[Series[x (1 + x + x^2)/(x - 1)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Sep 12 2015 *)
With[{n=50},Total/@TakeList[Range[(n(n^2+1))/2],Range[0,n]]] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Nov 28 2017 *)
-
a(n):=n*(n^2 + 1)/2$ makelist(a(n), n, 0, nmax); /* Stefano Spezia, Aug 12 2018 */
-
{a(n) = n * (n^2 + 1) / 2}; /* Michael Somos, Dec 24 2011 */
-
concat(0, Vec(x*(1+x+x^2)/(x-1)^4 + O(x^20))) \\ Felix Fröhlich, Oct 11 2016
-
def A006003(n): return n*(n**2+1)>>1 # Chai Wah Wu, Mar 25 2024
Better description from Albert Rich (Albert_Rich(AT)msn.com), Mar 1997
A005898
Centered cube numbers: n^3 + (n+1)^3.
Original entry on oeis.org
1, 9, 35, 91, 189, 341, 559, 855, 1241, 1729, 2331, 3059, 3925, 4941, 6119, 7471, 9009, 10745, 12691, 14859, 17261, 19909, 22815, 25991, 29449, 33201, 37259, 41635, 46341, 51389, 56791, 62559, 68705, 75241, 82179, 89531, 97309, 105525, 114191, 123319, 132921
Offset: 0
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 52.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Pranava K. Jha, Perfect r-domination in the Kronecker product of three cycles, IEEE Trans. Circuits and Systems-I: Fundamental Theory and Applications, vol. 49, no. 1, pp. 89 - 92, Jan. 2002.
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (10).
- Michael Penn, what's the pattern, Kenneth?, YouTube video, 2021.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
- Eric Weisstein's World of Mathematics, Centered Cube Number
- D. Zeitlin, A family of Galileo sequences, Amer. Math. Monthly 82 (1975), 819-822.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
(1/12)*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6, ... gives
A049480,
A005894,
A063488,
A001845,
A063489,
A005898,
A063490,
A057813,
A063491,
A005902,
A063492,
A005917,
A063493,
A063494,
A063495,
A063496.
The 28 uniform 3D tilings: cab:
A299266,
A299267; crs:
A299268,
A299269; fcu:
A005901,
A005902; fee:
A299259,
A299265; flu-e:
A299272,
A299273; fst:
A299258,
A299264; hal:
A299274,
A299275; hcp:
A007899,
A007202; hex:
A005897,
A005898; kag:
A299256,
A299262; lta:
A008137,
A299276; pcu:
A005899,
A001845; pcu-i:
A299277,
A299278; reo:
A299279,
A299280; reo-e:
A299281,
A299282; rho:
A008137,
A299276; sod:
A005893,
A005894; sve:
A299255,
A299261; svh:
A299283,
A299284; svj:
A299254,
A299260; svk:
A010001,
A063489; tca:
A299285,
A299286; tcd:
A299287,
A299288; tfs:
A005899,
A001845; tsi:
A299289,
A299290; ttw:
A299257,
A299263; ubt:
A299291,
A299292; bnn:
A007899,
A007202. See the Proserpio link in
A299266 for overview.
-
[n^3+(n+1)^3: n in [0..40]]; // Vincenzo Librandi, Dec 16 2015
-
A005898:=(z+1)*(z**2+4*z+1)/(z-1)**4; # Simon Plouffe in his 1992 dissertation
-
a[n_]:=n^3; Table[a[n]+a[n+1], {n,0,100}] (* Vladimir Joseph Stephan Orlovsky, Jan 03 2009 *)
CoefficientList[Series[(1 + 5 x + 5 x^2 + x^3)/(1 - x)^4,{x, 0, 40}], x] (* Vincenzo Librandi, Dec 16 2015 *)
-
a(n)=n^3 + (n+1)^3 \\ Anders Hellström, Dec 16 2015
-
A005898_list, m = [], [12, -6, 2, 1]
for _ in range(10**2):
A005898_list.append(m[-1])
for i in range(3):
m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
-
[i^3+(i+1)^3 for i in range(0,39)] # Zerinvary Lajos, Jul 03 2008
A001845
Centered octahedral numbers (crystal ball sequence for cubic lattice).
Original entry on oeis.org
1, 7, 25, 63, 129, 231, 377, 575, 833, 1159, 1561, 2047, 2625, 3303, 4089, 4991, 6017, 7175, 8473, 9919, 11521, 13287, 15225, 17343, 19649, 22151, 24857, 27775, 30913, 34279, 37881, 41727, 45825, 50183, 54809, 59711, 64897, 70375, 76153, 82239
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Luciano Ancora, The Square Pyramidal Number and other figurate numbers, ch. 4.
- Bela Bajnok, Additive Combinatorics: A Menu of Research Problems, arXiv:1705.07444 [math.NT], May 2017. See Section 2.3.
- D. Bump, K. Choi, P. Kurlberg, and J. Vaaler, A local Riemann hypothesis, I pages 16 and 17
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
- Milan Janjić, Two Enumerative Functions
- Milan Janjić, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8.
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- G. Kreweras, Sur les hiérarchies de segments, Cahiers Bureau Universitaire Recherche Opérationnelle, Cahier 20, Inst. Statistiques, Univ. Paris, 1973.
- G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (10).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- R. G. Stanton and D. D. Cowan, Note on a "square" functional equation, SIAM Rev., 12 (1970), 277-279.
- Eric Weisstein's World of Mathematics, Haüy Construction
- Eric Weisstein's World of Mathematics, Octahedral Number
- Index entries for crystal ball sequences
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Sums of 2 consecutive terms give
A008412.
(1/12)*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6, ... gives
A049480,
A005894,
A063488,
A001845,
A063489,
A005898,
A063490,
A057813,
A063491,
A005902,
A063492,
A005917,
A063493,
A063494,
A063495,
A063496.
The 28 uniform 3D tilings: cab:
A299266,
A299267; crs:
A299268,
A299269; fcu:
A005901,
A005902; fee:
A299259,
A299265; flu-e:
A299272,
A299273; fst:
A299258,
A299264; hal:
A299274,
A299275; hcp:
A007899,
A007202; hex:
A005897,
A005898; kag:
A299256,
A299262; lta:
A008137,
A299276; pcu:
A005899,
A001845; pcu-i:
A299277,
A299278; reo:
A299279,
A299280; reo-e:
A299281,
A299282; rho:
A008137,
A299276; sod:
A005893,
A005894; sve:
A299255,
A299261; svh:
A299283,
A299284; svj:
A299254,
A299260; svk:
A010001,
A063489; tca:
A299285,
A299286; tcd:
A299287,
A299288; tfs:
A005899,
A001845; tsi:
A299289,
A299290; ttw:
A299257,
A299263; ubt:
A299291,
A299292; bnn:
A007899,
A007202. See the Proserpio link in
A299266 for overview.
-
a001845 n = (2 * n + 1) * (2 * n ^ 2 + 2 * n + 3) `div` 3
-- Reinhard Zumkeller, Dec 15 2013
-
Table[(4 n^3 - 6 n^2 + 8 n - 3)/3, {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Jan 15 2011 *)
LinearRecurrence[{4, -6, 4, -1}, {1, 7, 25, 63}, 40] (* Harvey P. Dale, Jun 05 2013 *)
CoefficientList[Series[(1 + x)^3/(-1 + x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 27 2017 *)
-
a(n)=(2*n+1)*(2*n^2+2*n+3)/3 \\ Charles R Greathouse IV, Dec 06 2011
A005902
Centered icosahedral (or cuboctahedral) numbers, also crystal ball sequence for f.c.c. lattice.
Original entry on oeis.org
1, 13, 55, 147, 309, 561, 923, 1415, 2057, 2869, 3871, 5083, 6525, 8217, 10179, 12431, 14993, 17885, 21127, 24739, 28741, 33153, 37995, 43287, 49049, 55301, 62063, 69355, 77197, 85609, 94611, 104223, 114465, 125357, 136919, 149171, 162133, 175825, 190267, 205479
Offset: 0
a(4) = 147 = (1, 3, 3, 1) dot (1, 12, 30, 20) = (1 + 36 + 90 + 20). - _Gary W. Adamson_, Aug 01 2008
G.f. = 1 + 13*x + 55*x^2 + 147*x^3 + 309*x^4 + 561*x^5 + 923*x^6 + 1415*x^7 + ...
- H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- S. Bjornholm, Clusters, condensed matter in embryonic form, Contemp. Phys. 31 1990 pp. 309-324.
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
- Nicolas Gastineau, Olivier Togni, Coloring of the d-th power of the face-centered cubic grid, arXiv:1806.08136 [cs.DM], 2018.
- D. R. Herrick, Home Page (displays these numbers as sizes of clusters in chemistry)
- Xiaogang Liang, Ilyar Hamid, and Haiming Duan, Dynamic stabilities of icosahedral-like clusters and their ability to form quasicrystals,>, AIP Advances 6, 065017 (2016).
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
- K. Urner, Cuboctahedral Sphere Packing
- Index entries for crystal ball sequences
- Index entries for sequences related to f.c.c. lattice
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
(1/12)*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives
A049480,
A005894,
A063488,
A001845,
A063489,
A005898,
A063490,
A057813,
A063491,
A005902,
A063492,
A005917,
A063493,
A063494,
A063495,
A063496.
The 28 uniform 3D tilings: cab:
A299266,
A299267; crs:
A299268,
A299269; fcu:
A005901,
A005902; fee:
A299259,
A299265; flu-e:
A299272,
A299273; fst:
A299258,
A299264; hal:
A299274,
A299275; hcp:
A007899,
A007202; hex:
A005897,
A005898; kag:
A299256,
A299262; lta:
A008137,
A299276; pcu:
A005899,
A001845; pcu-i:
A299277,
A299278; reo:
A299279,
A299280; reo-e:
A299281,
A299282; rho:
A008137,
A299276; sod:
A005893,
A005894; sve:
A299255,
A299261; svh:
A299283,
A299284; svj:
A299254,
A299260; svk:
A010001,
A063489; tca:
A299285,
A299286; tcd:
A299287,
A299288; tfs:
A005899,
A001845; tsi:
A299289,
A299290; ttw:
A299257,
A299263; ubt:
A299291,
A299292; bnn:
A007899,
A007202. See the Proserpio link in
A299266 for overview.
-
[(2*n+1)*(5*n^2+5*n+3)/3: n in [0..30]]; // G. C. Greubel, Dec 01 2017
-
A005902 := n -> (2*n+1)*(5*n^2+5*n+3)/3;
A005902:=(z+1)*(z**2+8*z+1)/(z-1)**4; # Simon Plouffe in his 1992 dissertation
-
f[n_] := (2n + 1)(5n^2 + 5n + 3)/3; Array[f, 36, 0] (* Robert G. Wilson v, Feb 02 2011 *)
LinearRecurrence[{4,-6,4,-1},{1,13,55,147},50] (* Harvey P. Dale, Oct 08 2015 *)
CoefficientList[Series[(x^3 + 9*x^2 + 9*x + 1)/(x - 1)^4, {x, 0, 50}], x] (* Indranil Ghosh, Apr 08 2017 *)
-
{a(n) = (2*n + 1) * (5*n^2 + 5*n + 3) / 3}; /* Michael Somos, Jun 03 2012 */
-
x='x+O('x^50); Vec((x^3 + 9*x^2 + 9*x + 1)/(x - 1)^4) \\ Indranil Ghosh, Apr 08 2017
-
def a(n): return (2*n+1)*(5*n**2+5*n+3)//3
print([a(n) for n in range(40)]) # Michael S. Branicky, Jan 13 2021
A000447
a(n) = 1^2 + 3^2 + 5^2 + 7^2 + ... + (2*n-1)^2 = n*(4*n^2 - 1)/3.
Original entry on oeis.org
0, 1, 10, 35, 84, 165, 286, 455, 680, 969, 1330, 1771, 2300, 2925, 3654, 4495, 5456, 6545, 7770, 9139, 10660, 12341, 14190, 16215, 18424, 20825, 23426, 26235, 29260, 32509, 35990, 39711, 43680, 47905, 52394, 57155, 62196, 67525, 73150, 79079, 85320, 91881, 98770, 105995, 113564, 121485
Offset: 0
G.f. = x + 10*x^2 + 35*x^3 + 84*x^4 + 165*x^5 + 286*x^6 + 455*x^7 + 680*x^8 + ...
a(2) = 10 since (-1, -1, -1), (-1, -1, 0), (-1, -1, 1), (-1, 0, 0), (-1, 0, 1), (-1, 1, 1), (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1) are the 10 solutions (x, y, z) of -1 <= x <= y <= z <= 1.
a(0) = 0, which corresponds to the empty sum.
- G. Chrystal, Textbook of Algebra, Vol. 1, A. & C. Black, 1886, Chap. XX, Sect. 10, Example 2.
- F. E. Croxton and D. J. Cowden, Applied General Statistics. 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1955, p. 742.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
- C. V. Durell, Advanced Algebra, Volume 1, G. Bell & Son, 1932, Exercise IIIe, No. 4.
- L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 7.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- J. L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., Vol. 2 (1931), pp. 355-359. [Annotated scanned copy]
- Valentin Bakoev, Algorithmic approach to counting of certain types m-ary partitions, Discrete Mathematics, Vol. 275 (2004), pp. 17-41. - _Valentin Bakoev_, Mar 03 2009
- F. E. Croxton and D. J. Cowden, Applied General Statistics, 2nd Ed., Prentice-Hall, Englewood Cliffs, NJ, 1955 [Annotated scans of just pages 742-743]
- Milan Janjic, Two Enumerative Functions.
- T. P. Martin, Shells of atoms, Phys. Reports, Vol. 273 (1996), pp. 199-241, eq. (11).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Eric Weisstein's World of Mathematics, Haüy Construction.
- Eric Weisstein's World of Mathematics, Square Pyramid.
- Index entries for two-way infinite sequences.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
A000447 is related to partitions of 2^n into powers of 2, as it is shown in the formula, example and cross-references of
A002577. -
Valentin Bakoev, Mar 03 2009
-
a000447 n = a000447_list !! n
a000447_list = scanl1 (+) a016754_list
-- Reinhard Zumkeller, Apr 02 2012
-
[n*(4*n^2-1)/3: n in [0..50]]; // Vincenzo Librandi, Jan 12 2016
-
A000447:=z*(1+6*z+z**2)/(z-1)**4; # Simon Plouffe, 1992 dissertation.
A000447:=n->n*(4*n^2 - 1)/3; seq(A000447(n), n=0..50); # Wesley Ivan Hurt, Mar 30 2014
-
Table[n (4 n^2 - 1)/3, {n, 0, 80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 10, 35}, 80] (* Harvey P. Dale, May 25 2012 *)
Join[{0}, Accumulate[Range[1, 81, 2]^2]] (* Harvey P. Dale, Jul 18 2013 *)
CoefficientList[Series[x (1 + 6 x + x^2)/(-1 + x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 27 2017 *)
-
A000447(n):=n*(4*n^2 - 1)/3$ makelist(A000447(n),n,0,20); /* Martin Ettl, Jan 07 2013 */
-
{a(n) = n * (4*n^2 - 1) / 3};
-
concat(0, Vec(x*(1+6*x+x^2)/(1-x)^4 + O(x^100))) \\ Altug Alkan, Jan 11 2016
-
def A000447(n): return n*((n**2<<2)-1)//3 # Chai Wah Wu, Feb 12 2023
Chrystal and Durell references from
R. K. Guy, Apr 02 2004
A005894
Centered tetrahedral numbers.
Original entry on oeis.org
1, 5, 15, 35, 69, 121, 195, 295, 425, 589, 791, 1035, 1325, 1665, 2059, 2511, 3025, 3605, 4255, 4979, 5781, 6665, 7635, 8695, 9849, 11101, 12455, 13915, 15485, 17169, 18971, 20895, 22945, 25125, 27439, 29891, 32485, 35225, 38115
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Milan Janjic, Two Enumerative Functions
- T. P. Martin, Shells of atoms, Phys. Rep., 273 (1996), 199-241, eq. (10).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
(1/12)*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives
A049480,
A005894,
A063488,
A001845,
A063489,
A005898,
A063490,
A057813,
A063491,
A005902,
A063492,
A005917,
A063493,
A063494,
A063495,
A063496.
The 28 uniform 3D tilings: cab:
A299266,
A299267; crs:
A299268,
A299269; fcu:
A005901,
A005902; fee:
A299259,
A299265; flu-e:
A299272,
A299273; fst:
A299258,
A299264; hal:
A299274,
A299275; hcp:
A007899,
A007202; hex:
A005897,
A005898; kag:
A299256,
A299262; lta:
A008137,
A299276; pcu:
A005899,
A001845; pcu-i:
A299277,
A299278; reo:
A299279,
A299280; reo-e:
A299281,
A299282; rho:
A008137,
A299276; sod:
A005893,
A005894; sve:
A299255,
A299261; svh:
A299283,
A299284; svj:
A299254,
A299260; svk:
A010001,
A063489; tca:
A299285,
A299286; tcd:
A299287,
A299288; tfs:
A005899,
A001845; tsi:
A299289,
A299290; ttw:
A299257,
A299263; ubt:
A299291,
A299292; bnn:
A007899,
A007202. See the Proserpio link in
A299266 for overview.
-
[(2*n+1)*(n^2+n+3)/3: n in [0..30]]; // G. C. Greubel, Nov 30 2017
-
Table[(2n+1)(n^2+n+3)/3,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,5,15,35},40] (* Harvey P. Dale, Nov 03 2011 *)
-
a(n)=(2*n+1)*(n^2+n+3)/3 \\ Charles R Greathouse IV, Sep 24 2015
A063489
a(n) = (2*n-1)*(5*n^2-5*n+6)/6.
Original entry on oeis.org
1, 8, 30, 77, 159, 286, 468, 715, 1037, 1444, 1946, 2553, 3275, 4122, 5104, 6231, 7513, 8960, 10582, 12389, 14391, 16598, 19020, 21667, 24549, 27676, 31058, 34705, 38627, 42834, 47336, 52143, 57265, 62712, 68494, 74621, 81103, 87950, 95172, 102779, 110781, 119188
Offset: 1
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- T. P. Martin, Shells of atoms, Phys. Rep., 273 (1996), 199-241, eq. (10).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives
A049480,
A005894,
A063488,
A001845,
A063489,
A005898,
A063490,
A057813,
A063491,
A005902,
A063492,
A005917,
A063493,
A063494,
A063495,
A063496.
The 28 uniform 3D tilings: cab:
A299266,
A299267; crs:
A299268,
A299269; fcu:
A005901,
A005902; fee:
A299259,
A299265; flu-e:
A299272,
A299273; fst:
A299258,
A299264; hal:
A299274,
A299275; hcp:
A007899,
A007202; hex:
A005897,
A005898; kag:
A299256,
A299262; lta:
A008137,
A299276; pcu:
A005899,
A001845; pcu-i:
A299277,
A299278; reo:
A299279,
A299280; reo-e:
A299281,
A299282; rho:
A008137,
A299276; sod:
A005893,
A005894; sve:
A299255,
A299261; svh:
A299283,
A299284; svj:
A299254,
A299260; svk:
A010001,
A063489; tca:
A299285,
A299286; tcd:
A299287,
A299288; tfs:
A005899,
A001845; tsi:
A299289,
A299290; ttw:
A299257,
A299263; ubt:
A299291,
A299292; bnn:
A007899,
A007202. See the Proserpio link in
A299266 for overview.
-
[(2*n-1)*(5*n^2-5*n+6)/6: n in [1..30]]; // G. C. Greubel, Dec 01 2017
-
Table[(2n-1)(5n^2-5n+6)/6,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,8,30,77},40] (* Harvey P. Dale, Aug 20 2012 *)
-
a(n) = { (2*n - 1)*(5*n^2 - 5*n + 6)/6 } \\ Harry J. Smith, Aug 23 2009
-
my(x='x+O('x^30)); Vec(serlaplace((-6 + 12*x + 15*x^2 + 10*x^3 )*exp(x)/6 + 1)) \\ G. C. Greubel, Dec 01 2017
Showing 1-10 of 60 results.
Comments