cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Robert A. Beeler

Robert A. Beeler's wiki page.

Robert A. Beeler has authored 3 sequences.

A243521 The number of states in a Tower of Hanoi puzzle with three pegs and n discs, where a larger disc can be placed directly on top of a smaller one at most once per peg.

Original entry on oeis.org

1, 3, 12, 57, 300, 1701, 10206, 63825, 411096, 2702349, 17992506, 120543561, 808224372, 5400815829, 35868103734, 236354531841, 1544182760496, 10001335837725, 64233753928722, 409298268016761, 2589206145139596
Offset: 0

Author

Robert A. Beeler, Jun 05 2014

Keywords

Crossrefs

Terms in product are A000325.

Programs

  • PARI
    Vec((1 - 37*x + 607*x^2 - 5800*x^3 + 35617*x^4 - 146023*x^5 + 400653*x^6 - 711780*x^7 + 746142*x^8 - 353412*x^9) / ((1 - 3*x)^4*(1 - 4*x)^3*(1 - 5*x)^2*(1 - 6*x)) + O(x^30)) \\ Colin Barker, Jul 18 2019
  • Sage
    for n in range(11):
        t=0
        for k in range(n+1):
            for j in range(n-k+1):
                t=t+((Combinations(n,k).cardinality())*(Combinations(n-k,j).cardinality())*((2^k)-k)*((2^j)-j)*((2^(n-k-j))-n+k+j));
        print(t)
    

Formula

a(n) = Sum_{i+j+k=n, i >= 0, j >= 0, k>= 0} {n choose i, j, k}(2^i-i)(2^j-j)(2^k-k).
a(n) = 6^n-3*n*5^{n-1}+3*n*(n-1)*4^{n-2}-n*(n-1)*(n-2)3^{n-3}.
From Colin Barker, Jul 18 2019: (Start)
G.f.: (1 - 37*x + 607*x^2 - 5800*x^3 + 35617*x^4 - 146023*x^5 + 400653*x^6 - 711780*x^7 + 746142*x^8 - 353412*x^9) / ((1 - 3*x)^4*(1 - 4*x)^3*(1 - 5*x)^2*(1 - 6*x)).
a(n) = 40*a(n-1) - 715*a(n-2) + 7522*a(n-3) - 51583*a(n-4) + 240964*a(n-5) - 776637*a(n-6) + 1705554*a(n-7) - 2442744*a(n-8) + 2060640*a(n-9) - 777600*a(n-10) for n>9.
(End)

A228094 Triangle starting at row 3 read by rows of the number of permutations in the n-th Dihedral group which are the product of k disjoint cycles, d(n,k), n >= 3, 1 <= k <= n.

Original entry on oeis.org

2, 3, 1, 2, 3, 2, 1, 4, 0, 5, 0, 1, 2, 2, 4, 3, 0, 1, 6, 0, 0, 7, 0, 0, 1, 4, 2, 0, 5, 4, 0, 0, 1, 6, 0, 2, 0, 9, 0, 0, 0, 1, 4, 4, 0, 0, 6, 5, 0, 0, 0, 1, 10, 0, 0, 0, 0, 11, 0, 0, 0, 0, 1, 4, 2, 2, 2, 0, 7, 6, 0, 0, 0, 0, 1, 12, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 1
Offset: 3

Author

Robert A. Beeler, Aug 09 2013

Keywords

Comments

The multivariable row polynomials give n times the cycle index for the Dihedral group D_n, called Z(D_n) (see the MathWorld link with the Harary reference). For example, 12*Z(D_6) = 2*(y_6)^1 + 2*(y_3)^2 + 4*(y_2)^3+3*(y_1)^2*(y_2)^2 + 1*(y_1)^6.

Examples

			Triangle begins
   2, 3, 1;
   2, 3, 2, 1;
   4, 0, 5, 0, 1;
   2, 2, 4, 3, 0,  1;
   6, 0, 0, 7, 0,  0, 1;
   4, 2, 0, 5, 4,  0, 0, 1;
   6, 0, 2, 0, 9,  0, 0, 0, 1;
   4, 4, 0, 0, 6,  5, 0, 0, 0, 1;
  10, 0, 0, 0, 0, 11, 0, 0, 0, 0, 1;
   4, 2, 2, 2, 0,  7, 6, 0, 0, 0, 0, 1;
   ...
		

References

  • Robert A. Beeler, How to Count: An Introduction to Combinatorics and Its Applications, Springer International Publishing, 2015. See Theorem 8.4.12 at pp. 246-247.
  • Frank Harary and Edgar M. Palmer, Graphical Enumeration, Academic Press, 1973, p. 37.

Crossrefs

Programs

  • Mathematica
    d[n_,k_]:=If[Divisible[n,k],EulerPhi[n/k],0]+If[OddQ[n]&&k==(n+1)/2,n,If[EvenQ[n]&&(k==n/2||k==(n+2)/2),n/2,0]]; Table[d[n,k],{n,3,12},{k,n}]//Flatten (* Stefano Spezia, Jun 26 2023 *)

Formula

d(n,k) = A054523(n,k) + d'(n,k), where: If n is odd, then d'(n,k)= n when k=(n+1)/2 and d'(n,k)=0 otherwise. If n is even, then d'(n,k)=n/2 when k=n/2, (n+2)/2 and d'(n,k)=0 otherwise.

Extensions

Terms corrected by Stefano Spezia, Jun 30 2023

A181044 The number of ways to compute the determinant of an n X n matrix using cofactor expansion.

Original entry on oeis.org

1, 4, 384, 173946175488, 1592481597212922365761871004823571903636713118111555911680
Offset: 1

Author

Robert A. Beeler, Sep 30 2010

Keywords

References

  • Robert A. Beeler, How to Count: An Introduction to Combinatorics and Its Applications, Springer International Publishing, 2015. See Theorem 6.1.9 at p. 153.

Crossrefs

Cf. A363767.

Programs

  • Mathematica
    a[1]=1; a[n_]:=2n a[n-1]^n; Array[a,5] (* Stefano Spezia, Jun 20 2023 *)
  • PARI
    a(n) = if (n==1, 1, 2*n*a(n-1)^n); \\ Michel Marcus, Jun 21 2023

Formula

a(n) = 2*n*(a(n-1))^n.
a(n) = 2*2^n*2^(n*(n-1))*2^(n*(n-1)*(n-2))*...*2^(n*(n-1)*...*4*3)*n*(n-1)^n*(n-2)^(n*(n-1))*(n-3)^(n*(n-1)*(n-2))*...*2^(n*(n-1)*...*4*3).
From Robert A. Beeler, Oct 11 2010: (Start)
4^(n!*(e-2)) < a(n) < (2*e)^(n!*(e-2)).
a(n) ~ A363767^n!. (End)