A131520
Number of partitions of the graph G_n (defined below) into "strokes".
Original entry on oeis.org
2, 6, 12, 22, 40, 74, 140, 270, 528, 1042, 2068, 4118, 8216, 16410, 32796, 65566, 131104, 262178, 524324, 1048614, 2097192, 4194346, 8388652, 16777262, 33554480, 67108914, 134217780, 268435510, 536870968, 1073741882, 2147483708
Offset: 1
Figure for G_4: o-o-o-o-o Two vertices on both sides are the same.
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- James East, Jitender Kumar, James D. Mitchell, and Wilf A. Wilson, Maximal subsemigroups of finite transformation and partition monoids, arXiv:1706.04967 [math.GR], 2017. [_James Mitchell_ and _Wilf A. Wilson_, Jul 21 2017]
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
A131518
Number of partitions of the graph G_n (defined below) into "strokes".
Original entry on oeis.org
2, 6, 14, 122, 362, 5282, 20582, 397154, 2027090, 46177922, 303147902, 7699478162, 63517159994, 1745540360930, 17676592058582, 517137940132802, 6290714838241442, 194139271606482434, 2782486941099788270, 90105513853333901042, 1495993248737211995402, 50671468195931300884322
Offset: 1
G_2 : o=o, two edges exist between v_1 and v_2.
-
f[n_, k_]:= If[EvenQ[n-k], Binomial[(n+k)/2, k], 0];
A088009[n_]:= n!*Sum[f[n-1, k-1]/k!, {k, 0, n}];
A131518[n_]:= If[EvenQ[n], 2*A088009[n] + n!*(n/2 +1), 2*A088009[n]];
Table[A131518[n], {n,1,30}] (* G. C. Greubel, Feb 14 2021 *)
-
def f(n, k): return binomial((n+k)/2, k) if (n-k)%2==0 else 0
def A088009(n): return factorial(n)*sum(f(n-1, k-1)/factorial(k) for k in (0..n))
def A131518(n): return 2*A088009(n) + (n/2 +1)*factorial(n) if (n%2==0) else 2*A088009(n)
[A131518(n) for n in (1..30)] # G. C. Greubel, Feb 14 2021
A089243
Number of partitions into strokes of the star graph with n edges on the plane, up to rotations and reflections around the center node.
Original entry on oeis.org
1, 2, 3, 4, 9, 22, 61, 200, 689, 3054, 12110, 61132, 274264, 1515134, 7498195, 44301928, 238206692, 1490114770, 8605537805, 56612534420, 348083793872, 2396294898646, 15577794980189, 111781094032984, 763986810923430, 5695585712379834
Offset: 0
For n = 3, call the center node "0" and the terminal nodes "1", "2", "3".
Four partitions exist as follows:
{1->0->2, 0->3}
{1->0->2, 3->0}
{1->0, 2->0, 3->0}
{0->1, 0->2, 0->3}.
So a(3) = 4.
-
p(n,t,o)=o*sum(k=0,(n-1)/2,n!/(k!*(n-2*k)!)*t^k)+if(n%2==0, n!/(n/2)!*t^(n/2));
a(n)=if(n==0,1,(sumdiv(n,d,eulerphi(n/d)*p(d,n/d,2)) + if(n%2,2*n*p((n-1)/2,2,1),n/2*p(n/2,2,2)+n*p(n/2-1,2,2)+n*p(n/2-1,2,1)))/(2*n)) \\ Christian Sievers, May 14 2023
Edited, terms a(0)-a(1) and a(6) corrected, a(7)-a(13) added by
Max Alekseyev, Oct 20 2022
A131519
a(1) = 1, a(2) = 6, a(3) = 66, a(4) = 714, and a(n) = 11*a(n-1) - 24*a(n-3) for n >= 5.
Original entry on oeis.org
1, 6, 66, 714, 7710, 83226, 898350, 9696810, 104667486, 1129781946, 12194877966, 131631637962, 1420833250878, 15336488688474, 165542216262126, 1786864380862314, 19287432460962078, 208188743880291834, 2247191437542514638, 24256207433904571146, 261821751919823278590
Offset: 1
Previously this sequence was thought to represent what now is
A354228.
-
I:=[6, 66, 714]; [1] cat [n le 3 select I[n] else 11*Self(n-1) -24*Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 14 2021
-
LinearRecurrence[{11, 0, -24}, {1, 6, 66, 714}, 30] (* G. C. Greubel, Feb 14 2021 *)
-
def A131519_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x*(1-2*x)*(1-3*x-6*x^2)/(1-11*x+24*x^3) ).list()
a=A131519_list(31); a[1:] # G. C. Greubel, Feb 14 2021
A357895
Number of partitions of the complete graph on n vertices into strokes.
Original entry on oeis.org
1, 2, 12, 472, 104800
Offset: 1
Showing 1-5 of 5 results.
Comments