A131520
Number of partitions of the graph G_n (defined below) into "strokes".
Original entry on oeis.org
2, 6, 12, 22, 40, 74, 140, 270, 528, 1042, 2068, 4118, 8216, 16410, 32796, 65566, 131104, 262178, 524324, 1048614, 2097192, 4194346, 8388652, 16777262, 33554480, 67108914, 134217780, 268435510, 536870968, 1073741882, 2147483708
Offset: 1
Figure for G_4: o-o-o-o-o Two vertices on both sides are the same.
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- James East, Jitender Kumar, James D. Mitchell, and Wilf A. Wilson, Maximal subsemigroups of finite transformation and partition monoids, arXiv:1706.04967 [math.GR], 2017. [_James Mitchell_ and _Wilf A. Wilson_, Jul 21 2017]
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
A131709
Number of partitions into "bus routes" of an n X 1 grid.
Original entry on oeis.org
1, 14, 104, 904, 8004, 71004, 630004, 5590004, 49600004, 440100004, 3905000004, 34649000004, 307440000004, 2727910000004, 24204700000004, 214767900000004, 1905632000000004, 16908641000000004, 150030090000000004, 1331214490000000004, 11811844000000000004, 104806295100000000004, 929944511000000000004, 8251382159000000000004, 73214376480000000000004, 649629943210000000000004
Offset: 0
A354228
Number of partitions of the multigraph G_n (defined below) into "strokes".
Original entry on oeis.org
1, 6, 58, 578, 5766, 57810, 580310, 5829538, 58575686, 588641522, 5915670070, 59451845314, 597489270438, 6004768803090, 60348023150742, 606498938168290, 6095328830488582, 61258206225329970, 615646518692614390, 6187263150038580994
Offset: 1
Previously
A131519 was thought to be this sequence.
-
CoefficientList[Series[x (1-2x)^2(1-3x-14x^2)/(1-13x+22x^2+88x^3-112x^4),{x,0,20}],x] (* or *) LinearRecurrence[{13,-22,-88,112},{0,1,6,58,578,5766},30] (* Harvey P. Dale, Oct 31 2024 *)
A089243
Number of partitions into strokes of the star graph with n edges on the plane, up to rotations and reflections around the center node.
Original entry on oeis.org
1, 2, 3, 4, 9, 22, 61, 200, 689, 3054, 12110, 61132, 274264, 1515134, 7498195, 44301928, 238206692, 1490114770, 8605537805, 56612534420, 348083793872, 2396294898646, 15577794980189, 111781094032984, 763986810923430, 5695585712379834
Offset: 0
For n = 3, call the center node "0" and the terminal nodes "1", "2", "3".
Four partitions exist as follows:
{1->0->2, 0->3}
{1->0->2, 3->0}
{1->0, 2->0, 3->0}
{0->1, 0->2, 0->3}.
So a(3) = 4.
-
p(n,t,o)=o*sum(k=0,(n-1)/2,n!/(k!*(n-2*k)!)*t^k)+if(n%2==0, n!/(n/2)!*t^(n/2));
a(n)=if(n==0,1,(sumdiv(n,d,eulerphi(n/d)*p(d,n/d,2)) + if(n%2,2*n*p((n-1)/2,2,1),n/2*p(n/2,2,2)+n*p(n/2-1,2,2)+n*p(n/2-1,2,1)))/(2*n)) \\ Christian Sievers, May 14 2023
Edited, terms a(0)-a(1) and a(6) corrected, a(7)-a(13) added by
Max Alekseyev, Oct 20 2022
A357895
Number of partitions of the complete graph on n vertices into strokes.
Original entry on oeis.org
1, 2, 12, 472, 104800
Offset: 1
Showing 1-5 of 5 results.
Comments