A089243 Number of partitions into strokes of the star graph with n edges on the plane, up to rotations and reflections around the center node.
1, 2, 3, 4, 9, 22, 61, 200, 689, 3054, 12110, 61132, 274264, 1515134, 7498195, 44301928, 238206692, 1490114770, 8605537805, 56612534420, 348083793872, 2396294898646, 15577794980189, 111781094032984, 763986810923430, 5695585712379834
Offset: 0
Examples
For n = 3, call the center node "0" and the terminal nodes "1", "2", "3". Four partitions exist as follows: {1->0->2, 0->3} {1->0->2, 3->0} {1->0, 2->0, 3->0} {0->1, 0->2, 0->3}. So a(3) = 4.
Links
- Christian Sievers, Table of n, a(n) for n = 0..728
Programs
-
PARI
p(n,t,o)=o*sum(k=0,(n-1)/2,n!/(k!*(n-2*k)!)*t^k)+if(n%2==0, n!/(n/2)!*t^(n/2)); a(n)=if(n==0,1,(sumdiv(n,d,eulerphi(n/d)*p(d,n/d,2)) + if(n%2,2*n*p((n-1)/2,2,1),n/2*p(n/2,2,2)+n*p(n/2-1,2,2)+n*p(n/2-1,2,1)))/(2*n)) \\ Christian Sievers, May 14 2023
Extensions
Edited, terms a(0)-a(1) and a(6) corrected, a(7)-a(13) added by Max Alekseyev, Oct 20 2022
More terms from Christian Sievers, May 14 2023
Comments