A350078
Irregular triangle read by rows: T(n,k) is the number of endofunctions on [n] whose second-largest component has size exactly k; n >= 0, 0 <= k <= floor(n/2).
Original entry on oeis.org
1, 1, 3, 1, 17, 10, 142, 87, 27, 1569, 911, 645, 21576, 11930, 10260, 2890, 355081, 189610, 174132, 104720, 6805296, 3543617, 3229275, 2493288, 705740, 148869153, 76060087, 67843521, 60223520, 34424208, 3660215680, 1842497914, 1605373560, 1530575960, 1051155000, 310181886
Offset: 0
Triangle begins:
1;
1;
3, 1;
17, 10;
142, 87, 27;
1569, 911, 645;
21576, 11930, 10260, 2890;
355081, 189610, 174132, 104720;
...
Column 0 gives gives 1 together with
A001865.
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, l) option remember; `if`(n=0, x^l[1], add(g(i)*
b(n-i, sort([l[], i])[-2..-1])*binomial(n-1, i-1), i=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$2])):
seq(T(n), n=0..10); # Alois P. Heinz, Dec 17 2021
-
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, l_] := g[n, l] = If[n == 0, x^l[[1]], Sum[g[i]*b[n - i, Sort[ Append[l, i]][[-2 ;; -1]]]*Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := With[{p = b[n, {0, 0}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
A350079
Triangle read by rows: T(n,k) is the number of endofunctions on [n] whose second-smallest component has size exactly k; n >= 0, 0 <= k <= max(0,n-1).
Original entry on oeis.org
1, 1, 3, 1, 17, 1, 9, 142, 19, 27, 68, 1569, 201, 135, 510, 710, 21576, 2921, 3465, 2890, 6390, 9414, 355081, 50233, 63630, 20230, 84490, 98847, 151032, 6805296, 1004599, 1196181, 918680, 705740, 1493688, 1812384, 2840648, 148869153, 22872097, 26904339, 23943752, 6351660, 28072548, 30810528, 38348748, 61247664
Offset: 0
Triangle begins:
1;
1;
3, 1;
17, 1, 9;
142, 19, 27, 68;
1569, 201, 135, 510, 710;
21576, 2921, 3465, 2890, 6390, 9414;
355081, 50233, 63630, 20230, 84490, 98847, 151032;
...
Column 0 gives gives 1 together with
A001865.
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, l) option remember; `if`(n=0, x^subs(infinity=0, l)[2],
add(b(n-i, sort([l[], i])[1..2])*g(i)*binomial(n-1, i-1), i=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [infinity$2])):
seq(T(n), n=0..12); # Alois P. Heinz, Dec 17 2021
-
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, l_] := b[n, l] = If[n == 0, x^(l /. Infinity -> 0)[[2]], Sum[b[n - i, Sort[Append[l, i]][[1;;2]]]*g[i]*Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := With[{p = b[n, {Infinity, Infinity}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
A350080
Irregular triangle read by rows: T(n,k) is the number of endofunctions on [n] whose third-largest component has size exactly k; n >= 0, 0 <= k <= floor(n/3).
Original entry on oeis.org
1, 1, 4, 26, 1, 237, 19, 2789, 336, 40270, 5981, 405, 689450, 115193, 18900, 13657756, 2459955, 659505, 307348641, 58366045, 20330163, 1375640, 7745565616, 1530739594, 623758590, 99936200, 216114310994, 44076571672, 19795671225, 5325116720
Offset: 0
Triangle begins:
1;
1;
4;
26, 1;
237, 19;
2789, 336;
40270, 5981, 405;
689450, 115193, 18900;
...
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, l) option remember; `if`(n=0, x^l[1], add(g(i)*
b(n-i, sort([l[], i])[-3..-1])*binomial(n-1, i-1), i=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$3])):
seq(T(n), n=0..12); # Alois P. Heinz, Dec 17 2021
-
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, l_] := b[n, l] = If[n == 0, x^l[[1]], Sum[g[i]*b[n - i, Sort[ Append[l, i]][[-3 ;; -1]]]*Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := With[{p = b[n, {0, 0, 0}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
A350081
Triangle read by rows: T(n,k) is the number of endofunctions on [n] whose third-smallest component has size exactly k; n >= 0, 0 <= k <= max(0,n-2).
Original entry on oeis.org
1, 1, 4, 26, 1, 237, 1, 18, 2789, 31, 135, 170, 40270, 386, 810, 3060, 2130, 689450, 6574, 13545, 36295, 44730, 32949, 13657756, 129291, 327285, 323680, 944300, 790776, 604128, 307348641, 2910709, 7207137, 6602120, 15476580, 18780930, 16311456, 12782916
Offset: 0
Triangle begins:
1;
1;
4;
26, 1;
237, 1, 18;
2789, 31, 135, 170;
40270, 386, 810, 3060, 2130;
689450, 6574, 13545, 36295, 44730, 32949;
...
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, l) option remember; `if`(n=0, x^subs(infinity=0, l)[3],
add(b(n-i, sort([l[], i])[1..3])*g(i)*binomial(n-1, i-1), i=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [infinity$3])):
seq(T(n), n=0..12); # Alois P. Heinz, Dec 17 2021
-
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, l_] := b[n, l] = If[n == 0, x^(l /. Infinity -> 0)[[3]], Sum[b[n - i, Sort[Append[l, i]][[1 ;; 3]]]*g[i]*Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := With[{p = b[n, {Infinity, Infinity, Infinity}]}, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
A350276
Irregular triangle read by rows: T(n,k) is the number of endofunctions on [n] whose fourth-smallest component has size exactly k; n >= 0, 0 <= k <= max(0,n-3).
Original entry on oeis.org
1, 1, 4, 27, 255, 1, 3094, 1, 30, 45865, 46, 405, 340, 803424, 659, 3780, 10710, 4970, 16239720, 12867, 48405, 209440, 178920, 87864, 372076163, 284785, 1225665, 3005940, 5457060, 3558492, 1812384, 9529560676, 7126384, 32262300, 51205700, 135084600, 120593340, 81557280, 42609720
Offset: 0
Triangle begins:
1;
1;
4;
27;
255, 1;
3094, 1, 30;
45865, 46, 405, 340;
803424, 659, 3780, 10710, 4970;
...
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, l) option remember; `if`(n=0, x^subs(infinity=0, l)[4],
add(b(n-i, sort([l[], i])[1..4])*g(i)*binomial(n-1, i-1), i=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [infinity$4])):
seq(T(n), n=0..12); # Alois P. Heinz, Dec 22 2021
-
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, l_] := b[n, l] = If[n == 0, x^(l /. Infinity -> 0)[[4]], Sum[b[n - i, Sort[Append[l, i]][[1 ;; 4]]]*g[i]*Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := With[{p = b[n, Table[Infinity, {4}]]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
Showing 1-5 of 5 results.
Comments