cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A045531 Number of sticky functions: endofunctions of [n] having a fixed point.

Original entry on oeis.org

1, 3, 19, 175, 2101, 31031, 543607, 11012415, 253202761, 6513215599, 185311670611, 5777672071535, 195881901213181, 7174630439858727, 282325794823047151, 11878335717996660991, 532092356706983938321, 25283323623228812584415, 1270184310304975912766347
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of functions f{1,2,...,n}->{1,2,...,n} with at least one element mapped to 1. - Geoffrey Critzer, Dec 10 2012
Equivalently, a(n) is the number of endofunctions with minimum 1. - Olivier Gérard, Aug 02 2016
Number of bargraphs of width n and height n. Equivalently: number of ordered n-tuples of positive integers such that the largest is n. Example: a(3) = 19 because we have 113, 123, 213, 223, 131, 132, 231, 232, 311, 312, 321, 322, 331, 332, 313, 323, 133, 233, and 333. - Emeric Deutsch, Jan 30 2017

Crossrefs

Column |a(n, 2)| of A039621. Row sums of triangle A055858.
Column k=1 of A246049.

Programs

  • Magma
    [n^n-(n-1)^n: n in [1..20] ]; // Vincenzo Librandi, May 07 2011
    
  • Mathematica
    Table[Sum[Binomial[n, i] (n - 1)^(n - i), {i, 1, n}], {n, 1, 20}]
  • Maxima
    a(n) = sum(k!*binomial(n-1,k-1)*stirling2(n,k),k,1,n); /* Vladimir Kruchinin, Mar 01 2014 */
  • PARI
    a(n)=n^n-(n-1)^n; \\ Charles R Greathouse IV, May 08 2011
    

Formula

a(n) = n^n - (n-1)^n.
E.g.f.: (T - x)/(T-T^2), where T=T(x) is Euler's tree function (see A000169).
With interpolated zeros, ceiling(n/2)^ceiling(n/2) - floor(n/2)^ceiling(n/2). - Paul Barry, Jul 13 2005
a(n) = A047969(n,n). - Alford Arnold, May 07 2005
a(n) = Sum_{i=1..n} binomial(n,i)*(i-1)^(i-1)*(n-i)^(n-i) = Sum_{i=1..n} binomial(n,i)*A000312(i-1)*A000312(n-i). - Vladimir Shevelev, Sep 30 2010
a(n) = Sum_{k=1..n} k!*binomial(n-1,k-1)*Stirling2(n,k). - Vladimir Kruchinin, Mar 01 2014
a(n) = A350454(n+1, 1) / (n+1). - Mélika Tebni, Dec 20 2022
Limit_{n->oo} a(n)/n^n = 1 - 1/e = A068996. - Luc Rousseau, Jan 20 2023

A349454 Number T(n,k) of endofunctions on [n] with exactly k fixed points, all of which are isolated; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 8, 3, 0, 1, 81, 32, 6, 0, 1, 1024, 405, 80, 10, 0, 1, 15625, 6144, 1215, 160, 15, 0, 1, 279936, 109375, 21504, 2835, 280, 21, 0, 1, 5764801, 2239488, 437500, 57344, 5670, 448, 28, 0, 1, 134217728, 51883209, 10077696, 1312500, 129024, 10206, 672, 36, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Dec 30 2021

Keywords

Examples

			Triangle T(n,k) begins:
        1;
        0,       1;
        1,       0,      1;
        8,       3,      0,     1;
       81,      32,      6,     0,    1;
     1024,     405,     80,    10,    0,   1;
    15625,    6144,   1215,   160,   15,   0,  1;
   279936,  109375,  21504,  2835,  280,  21,  0, 1;
  5764801, 2239488, 437500, 57344, 5670, 448, 28, 0, 1;
  ...
		

Crossrefs

Column k=0 gives A065440.
Row sums give A204042.
Main diagonal and first lower diagonal give A000012, A000004.
T(n+1,n-1) gives A000217.
T(n+3,n) gives A130809.
T(n+3,n-1) gives A102741 for n>=1.

Programs

  • Maple
    T:= (n, k)-> binomial(n, k)*(n-k-1)^(n-k):
    seq(seq(T(n, k), k=0..n), n=0..10);

Formula

T(n,k) = binomial(n,k) * (n-k-1)^(n-k).
From Mélika Tebni, Apr 02 2023: (Start)
E.g.f. of column k: -x / (LambertW(-x)*(1+LambertW(-x)))*x^k / k!.
Sum_{k=0..n} k^k*T(n,k) = A217701(n). (End)
Showing 1-2 of 2 results.