A157438 Primes p such that p^2 divides A085606((p-1)/2) = ((p-1)/2-1)^((p-1)/2) - 1.
5, 127, 607
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Select[Prime[Range[200]], JacobiSymbol[#, 6] == 1 &] (* T. D. Noe, Aug 17 2011 *) Select[Prime[Range[200]],MemberQ[{1,5,7,11},Mod[#,24]]&] (* Harvey P. Dale, May 25 2018 *)
s = 5; c = 1; Table[n s^(s + 1) - c (s - 1), {n, 1, 30}] (* or *) CoefficientList[Series[(15621 + 4 x)/(-1 + x)^2, {x, 0, 29}], x]
[((2^n - 1)^(2^n) - 1)/(2^n)^2: n in [0..7]]; // G. C. Greubel, Oct 26 2017
Table[((2^n-1)^(2^n)-1)/(2^n)^2,{n,0,7}]
for(n=0,7, print1(((2^n - 1)^(2^n) - 1)/(2^n)^2, ", ")) \\ G. C. Greubel, Oct 26 2017
select(n -> not isprime(n) and (2^n-1) &^ (2^n) mod n = 1, [seq(i,i=9..10000,2)]); # Robert Israel, Jul 06 2017
Do[f=PowerMod[(2^n-1),(2^n),n]-1;If[ !PrimeQ[n]&&IntegerQ[(n+1)/2]&&IntegerQ[f/n],Print[n]],{n,2,10000}]
Join[{1},Table[n*n^n-(n-1)(n-1)^n,{n,20}]] (* Harvey P. Dale, Sep 08 2016 *)
Comments