cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A062024 a(n) = ((n+1)^n + (n-1)^n)/2.

Original entry on oeis.org

1, 1, 5, 36, 353, 4400, 66637, 1188544, 24405761, 567108864, 14712104501, 421504185344, 13218256749601, 450353989316608, 16565151205544957, 654244800082329600, 27614800115689879553, 1240529732459024678912, 59095217374989483261925, 2975557672677668838178816
Offset: 0

Views

Author

Amarnath Murthy, Jun 02 2001

Keywords

Comments

Let b(n) = A302583(n) = ((n+1)^n - (n-1)^n)/2 = 0, 1, 4, 28, 272, ... then lim_{n -> infinity} b(n)/a(n) = tanh(1) = 0.76159415... . - Thomas Ordowski, Dec 06 2012
Obviously, a(n) is always odd number for even n. - Altug Alkan, Sep 28 2015

Examples

			a(3) = (4^3 + 2^3)/2 = 36.
		

Crossrefs

Cf. A302583.

Programs

Formula

a(n) = n! * [x^n] exp(n*x)*cosh(x). - Ilya Gutkovskiy, Apr 10 2018

Extensions

More terms from Larry Reeves (larryr(AT)acm.org) and Jason Earls, Jun 06 2001
Offset changed from 1 to 0 by Harry J. Smith, Jul 29 2009
a(18)-a(19) from Vincenzo Librandi, Sep 28 2015

A302587 a(n) = n! * [x^n] exp(n*x)*tanh(x).

Original entry on oeis.org

0, 1, 4, 25, 224, 2641, 38592, 671665, 13548544, 310580161, 7971353600, 226406902921, 7049219383296, 238722074157841, 8735529994928128, 343474252543881313, 14441163232204292096, 646510839624706118401, 30704150325602206089216, 1541807339347429264648441
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2018

Keywords

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(0)..a(N)
    T:= series(tanh(x),x,N+1):
    C:= [seq(coeff(T,x,j),j=1..N)]:
    seq(n! * add(C[i]*n^(n-i)/(n-i)!,i=1..n,2), n=0..N); # Robert Israel, Apr 10 2018
  • Mathematica
    Table[n! SeriesCoefficient[Exp[n x] Tanh[x], {x, 0, n}], {n, 0, 19}]
  • PARI
    a(n) = my(x='x+O('x^(n+1))); polcoeff(n!*exp(n*x)*tanh(x), n); \\ Michel Marcus, Apr 11 2018; corrected Jun 15 2022

Formula

a(n) ~ tanh(1) * n^n. - Vaclav Kotesovec, Jun 08 2019

A302584 a(n) = n! * [x^n] exp(n*x)/cos(x).

Original entry on oeis.org

1, 1, 5, 36, 357, 4500, 68857, 1239504, 25661545, 600655824, 15684383021, 452001644864, 14249852124365, 487836995500608, 18022519535240417, 714658089577017600, 30275849571771536977, 1364687729891761740032, 65213822241378992547925, 3293203845745202062590976
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[n x]/Cos[x], {x, 0, n}], {n, 0, 19}]
    Table[(2 I)^n EulerE[n, (1 - I n)/2], {n, 0, 19}]

Formula

a(n) ~ n^n / cos(1). - Vaclav Kotesovec, Jun 08 2019

A302585 a(n) = n! * [x^n] exp(n*x)/cosh(x).

Original entry on oeis.org

1, 1, 3, 18, 165, 2000, 29855, 527632, 10762857, 248811264, 6428081979, 183537694208, 5739195739277, 195059957567488, 7159662639822615, 282252719348582400, 11894243092571825745, 533554809104057434112, 25384473065818477067123, 1276688324194885747474432
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[n x]/Cosh[x], {x, 0, n}], {n, 0, 19}]
    Table[2^n EulerE[n, (n + 1)/2], {n, 0, 19}]

Formula

a(n) ~ n^n / cosh(1). - Vaclav Kotesovec, Jun 08 2019

A302586 a(n) = n! * [x^n] exp(n*x)*tan(x).

Original entry on oeis.org

0, 1, 4, 29, 288, 3641, 55872, 1008349, 20923392, 490730641, 12836633600, 370512824285, 11697136754688, 400947361714121, 14829211483455488, 588633245015433437, 24960134277040177152, 1126038686507284428961, 53851620649898789830656, 2721385807644104827095965
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[n x] Tan[x], {x, 0, n}], {n, 0, 19}]
    Table[I^(n + 1) 2^(n - 1) (EulerE[n, (-I/2) n] - EulerE[n, 1 - (I/2) n]), {n, 0, 19}]

Formula

a(n) ~ tan(1) * n^n. - Vaclav Kotesovec, Jun 08 2019

A302605 a(n) = n! * [x^n] exp(n*x)*arcsin(x).

Original entry on oeis.org

0, 1, 4, 28, 272, 3384, 51300, 917064, 18884672, 440168832, 11454902500, 329208395264, 10355322975120, 353851897861760, 13052503620917124, 516917167506777600, 21875427250996723968, 985164766018898243584, 47043119138733155306052, 2374168079889664129576960
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[n x] ArcSin[x], {x, 0, n}], {n, 0, 19}]

Formula

a(n) = Sum_{k=1..n} binomial(n,k)*(k-2)!!^2*n^(n-k)*(1-(-1)^k)/2. - Fabian Pereyra, Oct 05 2024

A302609 a(n) = n! * [x^n] exp(n*x)*arctanh(x).

Original entry on oeis.org

0, 1, 4, 29, 288, 3649, 56160, 1017029, 21181440, 498682881, 13095232000, 379443829709, 12025239367680, 413761766695809, 15360425115176960, 611958601019294325, 26042588632355176448, 1179009749826940037889, 56579126414696034729984, 2868848293506101088635389
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[n x] ArcTanh[x], {x, 0, n}], {n, 0, 19}]
    nmax = 20; CoefficientList[Series[Log[(1 - LambertW[-x])/(1 + LambertW[-x])] / (2*(1 + LambertW[-x])), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 09 2019 *)

Formula

E.g.f.: log((1 - LambertW(-x))/(1 + LambertW(-x))) / (2*(1 + LambertW(-x))). - Vaclav Kotesovec, Jun 09 2019
a(n) ~ log(n) * n^n / 4 * (1 + (gamma + 3*log(2))/log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jun 09 2019
a(n) = Sum_{k=1..n} binomial(n,k)*(k-1)!*n^(n-k)*(1-(-1)^k)/2. - Fabian Pereyra, Oct 05 2024

A302606 a(n) = n! * [x^n] exp(n*x)*arcsinh(x).

Original entry on oeis.org

0, 1, 4, 26, 240, 2884, 42660, 748544, 15185856, 349574544, 9000902500, 256293989984, 7996078704240, 271246034903232, 9939835626507332, 391303051339622400, 16469438021801262848, 737992773619777599744, 35077254665501330210628, 1762671472887447792620032
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[n x] ArcSinh[x], {x, 0, n}], {n, 0, 19}]

Formula

a(n) ~ arcsinh(1) * n^n = log(1 + sqrt(2)) * n^n. - Vaclav Kotesovec, Jun 09 2019
a(n) = Sum_{k=1..n, k odd} (-1)^((k-1)/2)*binomial(n,k)*(k-2)!!^2*n^(n-k). - Fabian Pereyra, Oct 05 2024

A302608 a(n) = n! * [x^n] exp(n*x)*arctan(x).

Original entry on oeis.org

0, 1, 4, 25, 224, 2649, 38880, 679449, 13749248, 315919665, 8122432000, 231002307449, 7199799644160, 244028744225993, 8936047251296256, 351569799174274425, 14789182545666244608, 662389019735008588129, 31470659616611382460416, 1580849762199983023572313
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[n x] ArcTan[x], {x, 0, n}], {n, 0, 19}]
    Join[{0}, Table[n^n (HypergeometricPFQ[{1, 1, 1 - n}, {2}, -(I/n)] + HypergeometricPFQ[{1, 1, 1 - n}, {2}, I/n])/2, {n, 19}]]

Formula

a(n) ~ arctan(1) * n^n. - Vaclav Kotesovec, Jun 09 2019
a(n) = Sum_{k=1..n, k odd} (-1)^((k-1)/2)*binomial(n,k)*(k-1)!*n^(n-k). - Fabian Pereyra, Oct 05 2024

A345632 Sum of terms of even index in the binomial decomposition of n^(n-1).

Original entry on oeis.org

1, 1, 5, 28, 353, 3376, 66637, 908608, 24405761, 432891136, 14712104501, 321504185344, 13218256749601, 343360783937536, 16565151205544957, 498676704524517376, 27614800115689879553, 945381827279671853056, 59095217374989483261925, 2267322327322331161821184, 157904201452248753415276001
Offset: 1

Views

Author

Olivier Gérard, Jun 21 2021

Keywords

Comments

When writing n^(n-1) (A000169) as a sum of powers of n using the binomial theorem, one can separately sum the even and the odd powers of n. This is the even part.

Crossrefs

Cf. A345633 (odd part).

Programs

  • Mathematica
    Table[Plus @@ Table[(n-1)^(2 k) Binomial[n-1, 2 k], {k, 0, Floor[n/2]}], {n, 1, 21}]

Formula

a(n+1) = Sum_{k=0..floor(n/2)} n^(2k) binomial(n, 2k).
a(n+1) = ((1 - n)^n + (1 + n)^n)/2. - Stefano Spezia, Jun 21 2021
Showing 1-10 of 11 results. Next