cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A302583 a(n) = ((n + 1)^n - (n - 1)^n)/2.

Original entry on oeis.org

0, 1, 4, 28, 272, 3376, 51012, 908608, 18640960, 432891136, 11225320100, 321504185344, 10079828372880, 343360783937536, 12627774819845668, 498676704524517376, 21046391759976988928, 945381827279671853056, 45032132922921758270916, 2267322327322331161821184
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[((n + 1)^n - (n - 1)^n)/2, {n, 0, 19}]
    nmax = 19; CoefficientList[Series[(x^2 - LambertW[-x]^2)/(2 x LambertW[-x] (1 + LambertW[-x])), {x, 0, nmax}], x] Range[0, nmax]!
    Table[n! SeriesCoefficient[Exp[n x] Sinh[x], {x, 0, n}], {n, 0, 19}]

Formula

E.g.f.: (x^2 - LambertW(-x)^2)/(2*x*LambertW(-x)*(1 + LambertW(-x))).
a(n) = n! * [x^n] exp(n*x)*sinh(x).

A302587 a(n) = n! * [x^n] exp(n*x)*tanh(x).

Original entry on oeis.org

0, 1, 4, 25, 224, 2641, 38592, 671665, 13548544, 310580161, 7971353600, 226406902921, 7049219383296, 238722074157841, 8735529994928128, 343474252543881313, 14441163232204292096, 646510839624706118401, 30704150325602206089216, 1541807339347429264648441
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2018

Keywords

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(0)..a(N)
    T:= series(tanh(x),x,N+1):
    C:= [seq(coeff(T,x,j),j=1..N)]:
    seq(n! * add(C[i]*n^(n-i)/(n-i)!,i=1..n,2), n=0..N); # Robert Israel, Apr 10 2018
  • Mathematica
    Table[n! SeriesCoefficient[Exp[n x] Tanh[x], {x, 0, n}], {n, 0, 19}]
  • PARI
    a(n) = my(x='x+O('x^(n+1))); polcoeff(n!*exp(n*x)*tanh(x), n); \\ Michel Marcus, Apr 11 2018; corrected Jun 15 2022

Formula

a(n) ~ tanh(1) * n^n. - Vaclav Kotesovec, Jun 08 2019

A084061 Square number array read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 5, 27, 1, 1, 6, 36, 256, 1, 1, 7, 45, 353, 3125, 1, 1, 8, 54, 452, 4400, 46656, 1, 1, 9, 63, 553, 5725, 66637, 823543, 1, 1, 10, 72, 656, 7100, 87704, 1188544, 16777216, 1, 1, 11, 81, 761, 8525, 109863, 1577849, 24405761, 387420489, 1, 1, 12, 90, 868, 10000, 133120, 1991752, 32618512, 567108864, 10000000000
Offset: 0

Views

Author

Paul Barry, May 11 2003

Keywords

Examples

			Rows begin:
1 1 4 27 256 ...
1 1 5 36 353 ...
1 1 6 45 452 ...
1 1 7 54 553 ...
1 1 8 63 656 ...
		

Crossrefs

Diagonals include A084062, A084063, A084095.

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> ((k+Sqrt(n-k))^k + (k-Sqrt(n-k))^k)/2 ))); # G. C. Greubel, Jan 11 2020
  • Magma
    [Round(((k+Sqrt(n-k))^k + (k-Sqrt(n-k))^k)/2): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 11 2020
    
  • Maple
    seq(seq( round(((k+sqrt(n-k))^k + (k-sqrt(n-k))^k)/2), k=0..n), n=0..10); # G. C. Greubel, Jan 11 2020
  • Mathematica
    Table[If[n==0 && k==0, 1, Round[((k-Sqrt[n-k])^k + (k+Sqrt[n-k])^k)/2]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 11 2020 *)
  • PARI
    T(n,k) = round( ((k+sqrt(n-k))^n + (k-sqrt(n-k))^k)/2 ); \\ G. C. Greubel, Jan 11 2020
    
  • Sage
    [[round(((k+sqrt(n-k))^k + (k-sqrt(n-k))^k)/2) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jan 11 2020
    

Formula

T(n, k) = ( (n - sqrt(k))^n + (n + sqrt(k))^n )/2.

A302584 a(n) = n! * [x^n] exp(n*x)/cos(x).

Original entry on oeis.org

1, 1, 5, 36, 357, 4500, 68857, 1239504, 25661545, 600655824, 15684383021, 452001644864, 14249852124365, 487836995500608, 18022519535240417, 714658089577017600, 30275849571771536977, 1364687729891761740032, 65213822241378992547925, 3293203845745202062590976
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[n x]/Cos[x], {x, 0, n}], {n, 0, 19}]
    Table[(2 I)^n EulerE[n, (1 - I n)/2], {n, 0, 19}]

Formula

a(n) ~ n^n / cos(1). - Vaclav Kotesovec, Jun 08 2019

A302585 a(n) = n! * [x^n] exp(n*x)/cosh(x).

Original entry on oeis.org

1, 1, 3, 18, 165, 2000, 29855, 527632, 10762857, 248811264, 6428081979, 183537694208, 5739195739277, 195059957567488, 7159662639822615, 282252719348582400, 11894243092571825745, 533554809104057434112, 25384473065818477067123, 1276688324194885747474432
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[n x]/Cosh[x], {x, 0, n}], {n, 0, 19}]
    Table[2^n EulerE[n, (n + 1)/2], {n, 0, 19}]

Formula

a(n) ~ n^n / cosh(1). - Vaclav Kotesovec, Jun 08 2019

A084064 Third row of number array A084061.

Original entry on oeis.org

1, 1, 6, 45, 452, 5725, 87704, 1577849, 32618512, 762046137, 19856872032, 571007744549, 17962793210944, 613650073693397, 22624291883495808, 895379458590349425, 37861032312753094912, 1703550488551604490353
Offset: 0

Views

Author

Paul Barry, May 11 2003

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> ((n-Sqrt(2))^n + (n+Sqrt(2))^n)/2); # G. C. Greubel, Jan 11 2020
  • Magma
    [Round(((n-Sqrt(2))^n + (n+Sqrt(2))^n)/2): n in [0..20]]; // G. C. Greubel, Jan 11 2020
    
  • Maple
    seq( round(((n-sqrt(2))^n + (n+sqrt(2))^n)/2), n=0..20); # G. C. Greubel, Jan 11 2020
  • Mathematica
    Table[Round[((n+Sqrt[2])^n + (n-Sqrt[2])^n)/2], {n,0,20}] (* G. C. Greubel, Jan 11 2020 *)
  • PARI
    vector(21, n, round(((n-1-sqrt(2))^(n-1) + (n-1+sqrt(2))^(n-1))/2) ) \\ G. C. Greubel, Jan 11 2020
    
  • Sage
    [round(((n-sqrt(2))^n + (n+sqrt(2))^n)/2) for n in (0..20)] # G. C. Greubel, Jan 11 2020
    

Formula

a(n) = ( (n - sqrt(2))^n + (n + sqrt(2))^n )/2.

A345632 Sum of terms of even index in the binomial decomposition of n^(n-1).

Original entry on oeis.org

1, 1, 5, 28, 353, 3376, 66637, 908608, 24405761, 432891136, 14712104501, 321504185344, 13218256749601, 343360783937536, 16565151205544957, 498676704524517376, 27614800115689879553, 945381827279671853056, 59095217374989483261925, 2267322327322331161821184, 157904201452248753415276001
Offset: 1

Views

Author

Olivier Gérard, Jun 21 2021

Keywords

Comments

When writing n^(n-1) (A000169) as a sum of powers of n using the binomial theorem, one can separately sum the even and the odd powers of n. This is the even part.

Crossrefs

Cf. A345633 (odd part).

Programs

  • Mathematica
    Table[Plus @@ Table[(n-1)^(2 k) Binomial[n-1, 2 k], {k, 0, Floor[n/2]}], {n, 1, 21}]

Formula

a(n+1) = Sum_{k=0..floor(n/2)} n^(2k) binomial(n, 2k).
a(n+1) = ((1 - n)^n + (1 + n)^n)/2. - Stefano Spezia, Jun 21 2021

A345633 Sum of terms of odd index in the binomial decomposition of n^(n-1).

Original entry on oeis.org

0, 1, 4, 36, 272, 4400, 51012, 1188544, 18640960, 567108864, 11225320100, 421504185344, 10079828372880, 450353989316608, 12627774819845668, 654244800082329600, 21046391759976988928, 1240529732459024678912, 45032132922921758270916, 2975557672677668838178816
Offset: 1

Views

Author

Olivier Gérard, Jun 21 2021

Keywords

Comments

When writing n^(n-1) (A000169) as a sum of powers of n using the binomial theorem, one can separately sum the even and the odd powers of n. This is the odd part. See the Formula section.

Crossrefs

Cf. A345632 (even part).

Programs

  • Mathematica
    Table[Plus @@ Table[(n - 1)^(2 k + 1) Binomial[n - 1, 2 k + 1], {k, 0, Floor[(n - 1)/2]}], {n, 1, 21}]

Formula

a(n+1) = Sum_{k=0..floor((n-1)/2)} n^(2k+1)*binomial(n, 2k+1).
a(n+1) = ((1 + n)^n - (1 - n)^n)/2.

A262718 a(n) = (n+1)^n - 2*(n^n) + (n-1)^n.

Original entry on oeis.org

0, 0, 2, 18, 194, 2550, 39962, 730002, 15257090, 359376750, 9424209002, 272385029466, 8604312602690, 294957765448710, 10906288759973882, 432701819402940450, 18336112083960655874, 826578941145375829470, 39497618599385891373002, 1994276034034710498109674
Offset: 0

Views

Author

Vladimir Kruchinin, Sep 28 2015

Keywords

Comments

Obviously, a(n) is always an even number. - Altug Alkan, Sep 28 2015

Crossrefs

Programs

  • Magma
    [(n+1)^n - 2*(n^n) + (n-1)^n: n in [0..30]]; // Vincenzo Librandi, Sep 28 2015
  • Mathematica
    Join[{0}, Table[(n + 1)^n - 2 (n^n) + (n - 1)^n, {n, 30}]] (* Vincenzo Librandi, Sep 28 2015 *)
  • Maxima
    B(x):=-lambert_w(-x);
    makelist(n!*coeff(taylor(diff(B(x),x)*(1-x/B(x))^2,x,0,20),x,n),n,0,10);
    
  • PARI
    a(n) = (n+1)^n - 2*(n^n) + (n-1)^n;
    vector(30, n, a(n-1)) \\ Altug Alkan, Sep 28 2015
    

Formula

E.g.f.: A(x) = B'(x)*(1-x/B(x))^2, where B(x) is g.f. of A000169.
a(n) = Sum{k=1..n} (k!*binomial(n-1,k-2)*stirling2(n,k)), n>0, a(0)=0.
a(n) = 2*(A062024(n) - A000312(n)). - Michel Marcus, Sep 28 2015
Showing 1-9 of 9 results.