cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A208231 Sum of the minimum cycle length over all functions f:{1,2,...,n}->{1,2,...,n} (endofunctions).

Original entry on oeis.org

0, 1, 5, 37, 373, 4761, 73601, 1336609, 27888281, 657386305, 17276807089, 500876786301, 15879053677697, 546470462226313, 20288935994319929, 808320431258439121, 34397370632215764001, 1557106493482564625793, 74713970491718324746529, 3787792171563440619543133, 202314171910557294992453009
Offset: 0

Views

Author

Geoffrey Critzer, Jan 10 2013

Keywords

Comments

Sum of the number of endofunctions whose cycle lengths are >=i for all i >=1. A000312 + A065440 + A134362 + A208230 + ...

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, m, add((j-1)!*
          b(n-j, min(m, j))*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> add(b(j$2)*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..25);  # Alois P. Heinz, May 20 2016
  • Mathematica
    nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Apply[Plus,Table[Range[0,nn]!CoefficientList[Series[Exp[Sum[t^i/i,{i,n,nn}]]-1,{x,0,nn}],x],{n,1,nn}]]

Formula

E.g.f.: A(T(x)) = Sum_{k>=1} exp( Sum_{i>=k} T(x)^i/i) - 1 where A(x) is the e.g.f. for A028417 and T(x) is the e.g.f. for A000169.

A208230 Number of functions f:{1,2,...,n}->{1,2,...,n} with all cycles of length >= 4.

Original entry on oeis.org

1, 0, 0, 0, 6, 144, 3000, 64560, 1498140, 37906848, 1046608416, 31438821600, 1023129229320, 35910464987760, 1353422643322464, 54548490915316944, 2342204085734058000, 106771822456475695680, 5151207243866077428480, 262261296920723111462592, 14053817061169685865626976
Offset: 0

Views

Author

Geoffrey Critzer, Jan 10 2013

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
          b(n-j)*binomial(n-1, j-1)*(j-1)!, j=4..n))
        end:
    a:= n-> add(b(j)*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..25);  # Alois P. Heinz, May 20 2016
  • Mathematica
    nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[Series[Exp[Sum[t^i/i,{i,4,nn}]],{x,0,nn}],x]

Formula

E.g.f.: exp( Sum_{i>=4} T(x)^i/i ) where T(x) is the e.g.f. for A000169

A334014 Array read by antidiagonals: T(n,k) is the number of functions f: X->Y, where X is a subset of Y, |X| = n, |Y| = n+k, such that for every x in X, f(f(x)) != x.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 2, 1, 3, 8, 18, 30, 1, 4, 15, 52, 163, 444, 1, 5, 24, 110, 478, 1950, 7360, 1, 6, 35, 198, 1083, 5706, 28821, 138690, 1, 7, 48, 322, 2110, 13482, 83824, 505876, 2954364, 1, 8, 63, 488, 3715, 27768, 203569, 1461944, 10270569, 70469000, 1, 9, 80, 702, 6078, 51894, 436656, 3618540, 29510268, 236644092, 1864204416, 1, 10, 99, 970, 9403, 90150, 854485, 8003950, 74058105, 676549450, 6098971555, 54224221050
Offset: 0

Views

Author

Mason C. Hart, Apr 14 2020

Keywords

Comments

Comes up in the study of the Zen Stare game (see description at A134362).
T(k,n-k)*binomial(n,k)*(n-k-1)!! is the number of different possible Zen Stare rounds with n starting players and k winners.

Examples

			Array begins:
=======================================================
n\k |    0     1     2      3      4      5       6
----+--------------------------------------------------
  0 |    1     1     1      1      1      1       1 ...
  1 |    0     1     2      3      4      5       6 ...
  2 |    0     3     8     15     24     35      48 ...
  3 |    2    18    52    110    198    322     488 ...
  4 |   30   163   478   1083   2110   3715    6078 ...
  5 |  444  1950  5706  13482  27768  51894   90150 ...
  6 | 7360 28821 83824 203569 436656 854485 1557376 ...
  ...
T(2,2) = 8; This because given X = {A,B}, Y = {A,B,C,D}. The only functions f: X->Y that meet the requirement are:
f(A) = C, f(B) = C
f(A) = D, f(B) = D
f(A) = D, f(B) = C
f(A) = C, f(B) = D
f(A) = B, f(B) = C
f(A) = B, f(B) = D
f(A) = C, f(B) = A
f(A) = D, f(B) = A
		

Crossrefs

Rows n=0..3 are A000012, A001477, A005563, A058794.
Columns k=0..4 are A134362, A089466, A089467, A089468, A220690(n+2).

Programs

  • PARI
    T(n,k)={my(w=-lambertw(-x + O(x^max(4,1+n)))); n!*polcoef(exp((k-1)*w - w^2/2)/(1-w), n)} \\ Andrew Howroyd, Apr 15 2020

Formula

T(n,k) = Sum_{i=0..n} k^(n-i)*binomial(n,i)*T(i,n-i); This means that with a constant n, T(n,k) is a polynomial of k.
T(n,0) = A134362(n).
T(0,k) = 1.
For odd n, Sum_{k=1..(n+1)/2} T(2*k-1,n-2*k+1)*binomial(n,2*k-1)*(n-2*k)!! = (n-1)^n.
E.g.f. of k-th column: exp((k-1)*W(x) - W(x)^2/2)/(1-W(x)) where W(x) is the e.g.f. of A000169. - Andrew Howroyd, Apr 15 2020
Showing 1-3 of 3 results.