Dan Eilers has authored 15 sequences. Here are the ten most recent ones:
A369597
a(n) is the number of reduced stable marriage problem instances of order 3 that generate n possible stable matchings.
Original entry on oeis.org
Cf.
A351409 (number of reduced instances of order n).
Cf.
A010790 (reduction factor for order n).
A368419
a(n) is the number of reduced stable marriage problem instances of order 5 that generate 16 - n possible stable matchings.
Original entry on oeis.org
176130, 498320, 19193670, 143035180, 348655065
Offset: 0
- D. R. Eilers, "The Maximum Number of Stable Matchings in the Stable Marriage Problem of Order 5 is 16". In preparation.
- Dr Jason Wilson, Director, Biola Quantitative Consulting Center, "Stable Marriage Problem Project Report", crediting team of Annika Miller, Henry Lin, and Joseph Liu; December 22, 2023.
- A. T. Benjamin, C. Converse, and H. A. Krieger, Note. How do I marry thee? Let me count the ways, Discrete Appl. Math. 59 (1995) 285-292.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021, [Section 5, Distribution for the number of stable matchings].
- D. E. Knuth, Mariages Stables, Presses Univ. de Montréal, 1976 (Research Problem #5).
- David F. Manlove, Algorithmics of Matching Under Preferences, World Scientific (2013) [Section 2.2.2].
- E. G. Thurber, Concerning the maximum number of stable matchings in the stable marriage problem, Discrete Math., 248 (2002), 195-219.
Cf.
A351430 (order 4, in reverse order).
A368433
a(n) is the number of reduced instances in the stable marriage problem of order n that generate the maximum possible number of stable matchings.
Original entry on oeis.org
1, 1, 91, 1, 176130
Offset: 1
A360213
Number of distinct stable marriage problem instances up to gender exchange.
Original entry on oeis.org
1, 10, 23436, 55037822976, 309586821132441600000, 9704204980882671472665034752000000, 3411909590124519376908837990487929799751761920000000, 24394862766922609598505096548473341484170343775734092352694570188800000000
Offset: 1
For order 2 we have A185141(2) = 16 instances that can be arranged in a 4 X 4 square with A000217(4) = (4 * 5) / 2 = 10 distinct instances up to gender exchange in the upper triangular region including the diagonal. So a(2) = 10.
A358648
Number of preference profiles of the stable roommates problem with 2n participants.
Original entry on oeis.org
1, 1296, 2985984000000, 416336312719673760153600000000, 39594086612242519324387557078266845776303882240000000000, 16363214235219603423192858350259453436046713251360764276842772299776000000000000000000000000
Offset: 1
Cf.
A356584 (up to isomorphism),
A185141 (Stable Marriage profiles),
A001147 (possible roommate pairings).
A357271
Lower bounds for the maximum number of stable matchings in the stable marriage problem based on composing smaller instances.
Original entry on oeis.org
1, 2, 3, 10, 16, 48, 71, 268, 330, 1000, 1231, 6472, 6720, 20176, 25011, 195472, 200832, 456300, 637336, 3419680, 3506880, 11221136, 15481956, 126112960, 127885440, 262860800, 384418176, 2000043808
Offset: 1
- Ryan Ong, Bethany Ang, Abigail Ho, Dan Eilers, Justin Marks, and Genti Buzi, Improved lower bounds for n=7, 9, 11, 13, 15, 2025.
- Ryan Ong, Bethany Ang, Abigail Ho, Dan Eilers, Justin Marks, and Genti Buzi, Improved Hill Climbing for the Stable Marriage Problem IFoRE 2024 Poster (2024).
- Peter J. Stuckey, Kim Marriott, and Guido Tack, The MiniZinc Handbook, Listing 2.2.12, stable-marriage.mzn, Version 2.9.2, 6 March 2025.
- E. G. Thurber, Concerning the maximum number of stable matchings in the stable marriage problem, Discrete Math., 248 (2002), 195-219.
A357269
Maximum number of stable matchings in the stable marriage problem of order n.
Original entry on oeis.org
1, 2, 3, 10, 16
Offset: 1
- C. Converse, Lower bounds for the maximum number of stable pairings for the general marriage problem based on the latin marriage problem, Ph. D. Thesis, Claremont Graduate School, Claremont, CA (1992).
- D. R. Eilers, "The Maximum Number of Stable Matchings in the Stable Marriage Problem of Order 5 is 16". In preparation.
- D. Gusfield and R. W. Irving, The Stable Marriage Problem: Structure and Algorithms. MIT Press, 1989, (Open Problem #1).
- A. T. Benjamin, C. Converse, and H. A. Krieger, Note. How do I marry thee? Let me count the ways, Discrete Appl. Math. 59 (1995) 285-292.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021, [Section 5, Distribution for the number of stable matchings].
- D. E. Knuth, Mariages Stables, Presses Univ. de Montréal, 1976 (Research Problem #5).
- E. G. Thurber, Concerning the maximum number of stable matchings in the stable marriage problem, Discrete Math., 248 (2002), 195-219.
Cf.
A351409 (total number of reduced instances).
A351781
a(n) = (n-1)^n*(n-1)!^n.
Original entry on oeis.org
0, 1, 64, 104976, 8153726976, 46656000000000000, 28079296819683655680000000, 2400095991902688012207233433600000000, 37800243186554601452585666030525214621696000000000
Offset: 1
A351580
a(n) is the number of multisets of size n-1 consisting of permutations of n elements.
Original entry on oeis.org
1, 2, 21, 2600, 9078630, 1634935320144, 22831938997720867560, 34390564970975286088924022400, 7457911916650283082000186530740981347120, 300682790088737748950725540713718365319268411170195200, 2830053444386286847574443631356044745870287426798365860653876609636480
Offset: 1
Starting with the following men's ranking table of order 3, where row k represents man k's rankings, the 1 in the 2nd position of row 3 means that man #3 ranks woman #2 as his 1st choice.
213
321
213
Step 1: reorder columns so row 1 is in natural order:
123
231
123
Step 2: reorder rows 2 to n so rows are in lexical order:
123
123
231
a(3)=21 because there are 1+2+3+4+5+6 = 21 possibilities for the last two rows in lexical order, with 3!=6 possible permutations for each row.
The 21 tables for a(3) are the following:
123 123 123 123 123 123 123
123 123 123 123 123 123 132
123 132 213 231 312 321 132
.
123 123 123 123 123 123 123
132 132 132 132 213 213 213
213 231 312 321 213 231 312
.
123 123 123 123 123 123 123
213 231 231 231 312 312 321
321 231 312 321 312 321 321
A351413
a(n) is the maximum number of stable matchings in the Latin Stable Marriage Problem of order n.
Original entry on oeis.org
1, 2, 3, 10, 9, 48, 61
Offset: 1
Maximal instance of order 2 with 2 stable matchings:
12
21
Maximal instance of order 3 with 3 stable matchings:
123
231
312
Maximal instance of order 4 with 10 stable matchings (group C2xC2):
1234
2143
3412
4321
Maximal instance of order 5 with 9 stable matchings:
12345
21453
34512
45231
53124
Maximal instance of order 6 with 48 stable matchings (Dihedral group):
123456
214365
365214
456123
541632
632541
Maximal instance of order 7 with 61 stable matchings:
1234567
2316745
3125476
4657312
5743621
6471253
7562134
- C. Converse, Lower bounds for the maximum number of stable pairings for the general marriage problem based on the latin marriage problem, Ph. D. Thesis, Claremont Graduate School, Claremont, CA (1992) [Examples are from 69-70].
- A. T. Benjamin, C. Converse, and H. A. Krieger, Note. How do I marry thee? Let me count the ways, Discrete Appl. Math. 59 (1995) 285-292.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021 [Sections 3.7 and 4.2].
- J. S. Hwang, Complete stable marriages and systems of I-M preferences, In: McAvaney K.L. (eds) Combinatorial Mathematics VIII. Lecture Notes in Mathematics, vol 884. Springer, Berlin, Heidelberg (1981) 49-63.
- E. G. Thurber, Concerning the maximum number of stable matchings in the stable marriage problem, Discrete Math., 248 (2002), 195-219.
Comments