cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A124324 Triangle read by rows: T(n,k) is the number of partitions of an n-set having k blocks of size > 1 (0<=k<=floor(n/2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 11, 3, 1, 26, 25, 1, 57, 130, 15, 1, 120, 546, 210, 1, 247, 2037, 1750, 105, 1, 502, 7071, 11368, 2205, 1, 1013, 23436, 63805, 26775, 945, 1, 2036, 75328, 325930, 247555, 27720, 1, 4083, 237127, 1561516, 1939630, 460845, 10395, 1, 8178
Offset: 0

Views

Author

Emeric Deutsch, Oct 28 2006

Keywords

Comments

Row sums are the Bell numbers (A000110).
It appears that the triangles in this sequence and A112493 have identical columns, except for shifts. - Jörgen Backelin, Jun 20 2022
Equivalent to Jörgen Backelin's observation, the rows of A112493 may be read off as the diagonals of this entry. - Tom Copeland, Sep 24 2022

Examples

			T(4,2) = 3 because we have 12|34, 13|24 and 14|23 (if we take {1,2,3,4} as our 4-set).
Triangle starts:
  1;
  1;
  1,    1;
  1,    4;
  1,   11,     3;
  1,   26,    25;
  1,   57,   130,    15;
  1,  120,   546,   210;
  1,  247,  2037,  1750,   105;
  1,  502,  7071, 11368,  2205;
  1, 1013, 23436, 63805, 26775, 945;
  ...
		

Crossrefs

Programs

  • Maple
    G:=exp(t*exp(z)-t+(1-t)*z): Gser:=simplify(series(G,z=0,36)): for n from 0 to 33 do P[n]:=sort(n!*coeff(Gser,z,n)) od: for n from 0 to 13 do seq(coeff(P[n],t,k),k=0..floor(n/2)) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(
          `if`(i>1, x, 1)*binomial(n-1, i-1)*b(n-i), i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Mar 08 2015, Jul 15 2017
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] :=  b[n, i] = Expand[If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*b[n-i*j, i-1]*If[i>1, x^j, 1], {j, 0, n/i}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)

Formula

E.g.f.: G(t,z) = exp(t*exp(z) - t + (1-t)*z).
T(n,1) = A000295(n) (the Eulerian numbers).
Sum_{k=0..floor(n/2)} k*T(n,k) = A124325(n).
T(2n,n) = A001147(n). - Alois P. Heinz, Apr 06 2018

A112493 Triangle read by rows, T(n, k) = Sum_{j=0..n} C(n-j, n-k)*E2(n, j), where E2 are the second-order Eulerian numbers A201637, for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 11, 25, 15, 1, 26, 130, 210, 105, 1, 57, 546, 1750, 2205, 945, 1, 120, 2037, 11368, 26775, 27720, 10395, 1, 247, 7071, 63805, 247555, 460845, 405405, 135135, 1, 502, 23436, 325930, 1939630, 5735730, 8828820, 6756750, 2027025, 1
Offset: 0

Views

Author

Wolfdieter Lang, Oct 14 2005

Keywords

Comments

Previous name was: Coefficient triangle of polynomials used for e.g.f.s of Stirling2 diagonals.
For the o.g.f. of diagonal k of the Stirling2 triangle one has a similar result. See A008517 (second-order Eulerian triangle).
A(m,x), the o.g.f. for column m, satisfies the recurrence A(m,x) = x*(x*(d/dx)A(m-1,x) + m*A(m-1,x))/(1-(m+1)*x), for m >= 1 and A(0,x) = 1/(1-x).
The e.g.f. for the sequence in column k+1, k >= 0, of A008278, i.e., for the diagonal k >= 0 of the Stirling2 triangle A048993, is exp(x)*Sum_{m=0..k} a(k,m)*(x^(m+k))/(m+k)!.
It appears that the triangles in this sequence and A124324 have identical columns, except for shifts. - Jörgen Backelin, Jun 20 2022
A refined version of this triangle is given in A356145, which contains a link providing the precise relationship between A124324 and this entry, confirming Jörgen Backelin's observation above. - Tom Copeland, Sep 24 2022

Examples

			Triangle starts:
  [1]
  [1, 1]
  [1, 4,  3]
  [1, 11, 25,  15]
  [1, 26, 130, 210,  105]
  [1, 57, 546, 1750, 2205, 945]
  ...
The e.g.f. of [0,0,1,7,25,65,...], the k=3 column of A008278, but with offset n=0, is exp(x)*(1*(x^2)/2! + 4*(x^3)/3! + 3*(x^4)/4!).
Third row [1,4,3]: There are three plane increasing trees on 3 vertices. The number of colors are shown to the right of a vertex.
...................................................
....1o.(1+t)...........1o.t*(1+t).....1o.t*(1+t)...
....|................. /.\............/.\..........
....|................ /...\........../...\.........
....2o.(1+t)........2o.....3o......3o....2o........
....|..............................................
....|..............................................
....3o.............................................
...................................................
The total number of trees is (1+t)^2 + t*(1+t) + t*(1+t) = 1+4*t+3*t^2 = R(2,t).
		

Crossrefs

Row sums give A006351(k+1), k>=0.
The column sequences start with A000012 (powers of 1), A000295 (Eulerian numbers), A112495, A112496, A112497.
Antidiagonal sums give A000110.
Cf. A356145.

Programs

  • Maple
    T := (n, k) -> add(combinat:-eulerian2(n, j)*binomial(n-j, n-k), j=0..n):
    seq(seq(T(n, k), k=0..n), n=0..9); # Peter Luschny, Apr 11 2016
  • Mathematica
    max = 11; f[x_, t_] := -1 - (1 + t)/t*ProductLog[-t/(1 + t)*Exp[(x - t)/(1 + t)]]; coes = CoefficientList[ Series[f[x, t], {x, 0, max}, {t, 0, max}], {x, t}]* Range[0, max]!; Table[coes[[n, k]], {n, 0, max}, {k, 1, n - 1}] // Flatten (* Jean-François Alcover, Nov 22 2012, from e.g.f. *)

Formula

a(k, m) = 0 if k < m, a(k, -1):=0, a(0, 0)=1, a(k, m)=(m+1)*a(k-1, m) + (k+m-1)*a(k-1, m-1) else.
From Peter Bala, Sep 30 2011: (Start)
E.g.f.: A(x,t) = -1-((1+t)/t)*LambertW(-(t/(1+t))*exp((x-t)/(1+t))) = x + (1+t)*x^2/2! + (1+4*t+3*t^2)*x^3/3! + .... A(x,t) is the inverse function of (1+t)*log(1+x)-t*x.
A(x,t) satisfies the partial differential equation (1-x*t)*dA/dx = 1 + A + t*(1+t)*dA/dt. It follows that the row generating polynomials R(n,t) satisfy the recurrence R(n+1,t) =(n*t+1)*R(n,t) + t*(1+t)*dR(n,t)/dt. Cf. A054589 and A075856. The polynomials t/(1+t)*R(n,t) are the row polynomials of A134991.
The generating function A(x,t) satisfies the autonomous differential equation dA/dx = (1+A)/(1-t*A). Applying [Bergeron et al., Theorem 1] gives a combinatorial interpretation for the row generating polynomials R(n,t): R(n,t) counts plane increasing trees on n+1 vertices where the non-leaf vertices of outdegree k come in t^(k-1)*(1+t) colors. An example is given below. Cf. A006351, which corresponds to the case t = 1. Applying [Dominici, Theorem 4.1] gives the following method for calculating the row polynomials R(n,t): Let f(x) = (1+x)/(1-x*t). Then R(n,t) = (f(x)*d/dx)^n(f(x)) evaluated at x = 0. (End)
Sum_{j=0..n} T(n-j,j) = A000110(n). - Alois P. Heinz, Jun 20 2022
From Mikhail Kurkov, Apr 01 2025: (Start)
E.g.f.: B(y) = -w/(x*(1+w)) where w = LambertW(-x/(1+x)*exp((y-x)/(1+x))) satisfies the first-order ordinary differential equation (1+x)*B'(y) = B(y)*(1+x*B(y))^2, hence row polynomials are P(n,x) = P(n-1,x) + x*Sum_{j=0..n-1} binomial(n, j)*P(j,x)*P(n-j-1,x) for n > 0 with P(0,x) = 1 (see MathOverflow link).
Conjecture: row polynomials are P(n,x) = Sum_{i=0..n} Sum_{j=0..i} Sum_{k=0..j} (n+i)!*Stirling1(n+j-k,j-k)*x^k*(x+1)^(j-k)*(-1)^(j+k)/((n+j-k)!*(i-j)!*k!). (End)
Conjecture: g.f. satisfies 1/(1 - x - x*y/(1 - 2*x - 2*x*y/(1 - 3*x - 3*x*y/(1 - 4*x - 4*x*y/(1 - 5*x - 5*x*y/(1 - ...)))))) (see A383019 for conjectures about combinatorial interpretation and algorithm for efficient computing). - Mikhail Kurkov, Apr 21 2025

Extensions

New name from Peter Luschny, Apr 11 2016

A112496 Fourth column of triangle A112493 used for e.g.f.s of Stirling2 diagonals.

Original entry on oeis.org

15, 210, 1750, 11368, 63805, 325930, 1561516, 7150000, 31682651, 137031986, 582035714, 2438479592, 10109790809, 41579014154, 169946747160, 691299506640, 2801567046135, 11320801495410, 45642930545070, 183698923750440
Offset: 0

Views

Author

Wolfdieter Lang, Oct 14 2005

Keywords

Crossrefs

Cf. A112495 (third column).
Column k=3 of A124324 (shifted).

Programs

  • Mathematica
    CoefficientList[Series[(15 - 90*x + 175*x^2 - 112*x^3)/((1 - x)^4*(1 - 2*x)^3*(1 - 3*x)^2*(1 - 4*x)), {x, 0, 50}], x] (* G. C. Greubel, Nov 13 2017 *)
    Table[2^(2*n+11)/3- 3^(n+5)*(n+9)/2 + 2^(n+3)*(n^2 + 15*n + 58) - n^3/6 - 3*n^2 - 55*n/3 - 229/6, {n,0,25}] (* Vaclav Kotesovec, Jul 23 2021 *)
  • PARI
    x='x+O('x^50); Vec((15-90*x+175*x^2-112*x^3)/((1-x)^4*(1-2*x)^3*(1-3*x)^2*(1-4*x))) \\ G. C. Greubel, Nov 13 2017

Formula

G.f.: (15-90*x+175*x^2-112*x^3)/((1-x)^4*(1-2*x)^3*(1-3*x)^2*(1-4*x)).
a(n) = 4*a(n-1) + (n+5)*A112495(n).
a(n) = 2^(2*n+11)/3- 3^(n+5)*(n+9)/2 + 2^(n+3)*(n^2 + 15*n + 58) - n^3/6 - 3*n^2 - 55*n/3 - 229/6. - Vaclav Kotesovec, Jul 23 2021

A381646 a(n) = 4^n - 2*3^(n-1)*(n+3) + 2^(n-2)*(n^2+3*n+4).

Original entry on oeis.org

0, 0, 0, 0, 6, 80, 650, 4172, 23310, 119016, 571122, 2621828, 11651222, 50536928, 215219706, 903799548, 3754755102, 15469272536, 63320624642, 257886717812, 1046169235110, 4230947198160, 17069749295370, 68738191563500, 276393979740206
Offset: 0

Views

Author

Enrique Navarrete, Mar 03 2025

Keywords

Comments

a(n) is the number of words of length n defined on 4 letters where two of the letters are used at least twice.

Examples

			For n=5 the 80 words that use 0 and 1 at least twice are 00111 (10 of this type), 00011 (10 of this type), 00112 (30 of this type), 00113 (30 of this type).
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{16,-105,362,-692,696,-288},{0,0,0,0,6,80},25] (* Stefano Spezia, Mar 03 2025 *)
  • Python
    def A381646(n): return ((1<2 else 0 # Chai Wah Wu, Mar 15 2025

Formula

a(n) = 4^n - 2*3^(n-1)*(n+3) + 2^(n-2)*(n^2+3*n+4).
E.g.f. exp(2*x)*(exp(x)-x-1)^2.
G.f.: 2*x^4*(3 - 8*x)/((1 - 3*x)^2*(1 - 2*x)^3*(1 - 4*x)). - Stefano Spezia, Mar 03 2025

A385329 a(n) = 5^n - 2*4^(n-1)*(n+4) + 3^(n-2)*(n^2+5*n+9).

Original entry on oeis.org

0, 0, 0, 0, 6, 110, 1220, 10612, 79786, 544434, 3468792, 21012200, 122500334, 693324502, 3833742796, 20809676604, 111288341970, 588046458074, 3076991784512, 15972440574064, 82370489136214, 422506631928510, 2157589903432020, 10977781519321220, 55686118748465786
Offset: 0

Views

Author

Enrique Navarrete, Jun 25 2025

Keywords

Comments

a(n) is the number of words of length n defined on 5 letters where two chosen letters, say a and b, are used at least twice.

Examples

			a(4) = 6 since the words are the 6 permutations of aabb.
a(5) = 110 since the words are (number of permutations in parentheses): aaabb (10), aabbb (10), aabbc (30), aabbd (30), aabbe (30).
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); [0,0,0,0] cat Coefficients(R!((2*x^4*(3 - 11*x)/((1 - 4*x)^2*(1 - 3*x)^3*(1 - 5*x))))); // Vincenzo Librandi, Jul 05 2025
  • Mathematica
    LinearRecurrence[{22, -200, 962, -2583, 3672, -2160}, {0, 0, 0, 0, 6, 110, 1220}, 25] (* Amiram Eldar, Jun 28 2025 *)

Formula

E.g.f.: exp(3*x)*(exp(x) - x - 1)^2.
G.f.: 2*x^4*(3 - 11*x)/((1 - 4*x)^2*(1 - 3*x)^3*(1 - 5*x)). - Jinyuan Wang, Jun 26 2025
Showing 1-5 of 5 results.