A124324
Triangle read by rows: T(n,k) is the number of partitions of an n-set having k blocks of size > 1 (0<=k<=floor(n/2)).
Original entry on oeis.org
1, 1, 1, 1, 1, 4, 1, 11, 3, 1, 26, 25, 1, 57, 130, 15, 1, 120, 546, 210, 1, 247, 2037, 1750, 105, 1, 502, 7071, 11368, 2205, 1, 1013, 23436, 63805, 26775, 945, 1, 2036, 75328, 325930, 247555, 27720, 1, 4083, 237127, 1561516, 1939630, 460845, 10395, 1, 8178
Offset: 0
T(4,2) = 3 because we have 12|34, 13|24 and 14|23 (if we take {1,2,3,4} as our 4-set).
Triangle starts:
1;
1;
1, 1;
1, 4;
1, 11, 3;
1, 26, 25;
1, 57, 130, 15;
1, 120, 546, 210;
1, 247, 2037, 1750, 105;
1, 502, 7071, 11368, 2205;
1, 1013, 23436, 63805, 26775, 945;
...
- Alois P. Heinz, Rows n = 0..200, flattened
- Per Alexandersson and Olivia Nabawanda, Peaks are preserved under run-sorting, arXiv:2104.04220 [math.CO], 2021.
- Fufa Beyene and Roberto Mantaci, Merging-Free Partitions and Run-Sorted Permutations, arXiv:2101.07081 [math.CO], 2021.
- Tom Copeland, Appell-Bell polynomials: Linking the associated Bell polynomials and the associated reduced inverse refined Eulerian polynomials, 2022.
- Tom Copeland, The reduced inverse refined Eulerian polynomials and associated arrays, 2022.
- Robin Houston, Adam P. Goucher, and Nathaniel Johnston, A New Formula for the Determinant and Bounds on Its Tensor and Waring Ranks, arXiv:2301.06586 [math.CO], 2023.
- O. Nabawanda, F. Rakotondrajao, and A. S. Bamunoba, Run Distribution Over Flattened Partitions, arXiv:2007.03821 [math.CO], 2020.
Columns k=0-10 give:
A000012,
A000295,
A112495,
A112496,
A112497,
A290034,
A290035,
A290036,
A290037,
A290038,
A290039.
-
G:=exp(t*exp(z)-t+(1-t)*z): Gser:=simplify(series(G,z=0,36)): for n from 0 to 33 do P[n]:=sort(n!*coeff(Gser,z,n)) od: for n from 0 to 13 do seq(coeff(P[n],t,k),k=0..floor(n/2)) od; # yields sequence in triangular form
# second Maple program:
b:= proc(n) option remember; expand(`if`(n=0, 1, add(
`if`(i>1, x, 1)*binomial(n-1, i-1)*b(n-i), i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
seq(T(n), n=0..15); # Alois P. Heinz, Mar 08 2015, Jul 15 2017
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*b[n-i*j, i-1]*If[i>1, x^j, 1], {j, 0, n/i}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)
A112493
Triangle read by rows, T(n, k) = Sum_{j=0..n} C(n-j, n-k)*E2(n, j), where E2 are the second-order Eulerian numbers A201637, for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 4, 3, 1, 11, 25, 15, 1, 26, 130, 210, 105, 1, 57, 546, 1750, 2205, 945, 1, 120, 2037, 11368, 26775, 27720, 10395, 1, 247, 7071, 63805, 247555, 460845, 405405, 135135, 1, 502, 23436, 325930, 1939630, 5735730, 8828820, 6756750, 2027025, 1
Offset: 0
Triangle starts:
[1]
[1, 1]
[1, 4, 3]
[1, 11, 25, 15]
[1, 26, 130, 210, 105]
[1, 57, 546, 1750, 2205, 945]
...
The e.g.f. of [0,0,1,7,25,65,...], the k=3 column of A008278, but with offset n=0, is exp(x)*(1*(x^2)/2! + 4*(x^3)/3! + 3*(x^4)/4!).
Third row [1,4,3]: There are three plane increasing trees on 3 vertices. The number of colors are shown to the right of a vertex.
...................................................
....1o.(1+t)...........1o.t*(1+t).....1o.t*(1+t)...
....|................. /.\............/.\..........
....|................ /...\........../...\.........
....2o.(1+t)........2o.....3o......3o....2o........
....|..............................................
....|..............................................
....3o.............................................
...................................................
The total number of trees is (1+t)^2 + t*(1+t) + t*(1+t) = 1+4*t+3*t^2 = R(2,t).
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
- D. Dominici, Nested derivatives: A simple method for computing series expansions of inverse functions. arXiv:math/0501052v2 [math.CA], 2005.
- Wolfdieter Lang, First ten rows.
- MathOverflow, Recursion for row polynomials of A112493, (2025).
- Andrew Elvey Price and Alan D. Sokal, Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials, arXiv:2001.01468 [math.CO], 2020.
-
T := (n, k) -> add(combinat:-eulerian2(n, j)*binomial(n-j, n-k), j=0..n):
seq(seq(T(n, k), k=0..n), n=0..9); # Peter Luschny, Apr 11 2016
-
max = 11; f[x_, t_] := -1 - (1 + t)/t*ProductLog[-t/(1 + t)*Exp[(x - t)/(1 + t)]]; coes = CoefficientList[ Series[f[x, t], {x, 0, max}, {t, 0, max}], {x, t}]* Range[0, max]!; Table[coes[[n, k]], {n, 0, max}, {k, 1, n - 1}] // Flatten (* Jean-François Alcover, Nov 22 2012, from e.g.f. *)
A112497
Fifth column of triangle A112493 used for e.g.f.s of Stirling2 diagonals.
Original entry on oeis.org
105, 2205, 26775, 247555, 1939630, 13609310, 88346258, 541831290, 3184396215, 18114492851, 100467071393, 546227989621, 2923225973476, 15447710150460, 80807432442660, 419245751359380, 2160664798858005, 11075023230179865
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (35, -560, 5432, -35714, 168542, -589632, 1556776, -3126949, 4777591, -5506936, 4703032, -2881136, 1195632, -300672, 34560).
-
CoefficientList[Series[(105 - 1470*x + 8400*x^2 - 25130*x^3 + 41615*x^4 - 36280*x^5 + 13048*x^6)/Product[(1 - j*x)^(6 - j), {j, 1, 5}], {x, 0, 50}], x] (* G. C. Greubel, Nov 13 2017 *)
-
x='x+O('x^50); Vec((105 -1470*x +8400*x^2 -25130*x^3 +41615*x^4 -36280*x^5 +13048*x^6)/((1-x)^5*(1-2*x)^4*(1-3*x)^3*(1-4*x)^2*(1-5*x))) \\ G. C. Greubel, Nov 13 2017
Showing 1-3 of 3 results.
Comments