cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Stephen Balaban

Stephen Balaban's wiki page.

Stephen Balaban has authored 2 sequences.

A202297 Product of the sum of the first n^2 primes by the sum of the first (n+1)^2 primes.

Original entry on oeis.org

0, 34, 1700, 38100, 403860, 2572620, 11863176, 43468984, 134426588, 364794428, 890218104, 1998186072, 4178379984, 8232956688, 15425693558, 27713583130, 47890427740, 80095432340, 130221623840, 206201325600, 318555575550, 481995772662, 715882366878, 1043383039482
Offset: 0

Author

Stephen Balaban, Dec 15 2011

Keywords

Crossrefs

Cf. A109724.

Programs

  • Clojure
    (defn prod-prime-matrix [n] (* (sum-matrix (first-n2-primes n)) (sum-matrix (first-n2-primes (inc n)))))
    
  • Magma
    A109724:=func; [0] cat [A109724(n)*A109724(n+1): n in [1..23]];  // Bruno Berselli, Dec 16 2011
    
  • Mathematica
    Table[(Plus@@Prime[Range[n^2]]) (Plus@@Prime[Range[(n + 1)^2]]), {n, 0, 19}] (* Alonso del Arte, Dec 16 2011 *)
  • PARI
    a(n) = vecsum(primes(n^2))* vecsum(primes((n+1)^2)); \\ Michel Marcus, Mar 20 2023

Formula

a(n) = A109724(n)*A109724(n+1).

Extensions

More terms from Bruno Berselli, Dec 16 2011

A202298 If A is the n X n matrix containing the first n^2 primes, a(n) is the sum of the elements of the square of A.

Original entry on oeis.org

4, 155, 3702, 39933, 244676, 1046455, 3635046, 10406049, 26595892, 60712839, 128248632, 253217949, 472633812, 837636667, 1431878468, 2356057659, 3756191658, 5844567389, 8865989698, 13147819241, 19100995732, 27324708263, 38402817766, 53116446341, 72537301810, 97894517685
Offset: 1

Author

Stephen Balaban, Dec 15 2011

Keywords

Examples

			M2 = [2,3; 5,7], M2*M2 = [19,27; 45,64], so a(2) = 19 + 27 + 45 + 64 = 155.
		

Crossrefs

Programs

  • Maple
    A202298 := proc(n)
        local A,A2,r,c ;
        A := Matrix(n, n) ;
        for r from 0 to n-1 do
        for c from 0 to n-1 do
            A[r+1,c+1] := ithprime(1+r*n+c) ;
        end do:
        end do:
        A2 := A^2 ;
        add(add(A2[r,c],r=1..n),c=1..n) ;
    end proc: # R. J. Mathar, Feb 09 2017
    # alternative
    N:= 50: # for a(1)..a(N)
    P:= [seq(ithprime(i),i=1..N^2)]:
    f:= proc(n) local M,e,u; M:= Matrix(n,n,P[1..n^2]);
       e:= Vector(n,1);
       e^%T . (M . (M . e));
    end proc:
    map(f, [$1..N]); # Robert Israel, Jan 11 2024
  • PARI
    a(n) = my(m = matrix(n,n, i, j, prime((i-1)*n+j))); my(mm = m^2); sum(k=1, n, vecsum(mm[k,])); \\ Michel Marcus, Jan 28 2017

Formula

a(n) = Sum_{j=1..n} (Sum_{i=1..n} prime(i+n*(j-1)) * Sum_{i=1..n} prime(j+n*(i-1))). - Robert Israel, Jan 11 2024

Extensions

More terms from Michel Marcus, Jan 28 2017