cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A316466 a(n) = 2*n*(7*n - 3).

Original entry on oeis.org

0, 8, 44, 108, 200, 320, 468, 644, 848, 1080, 1340, 1628, 1944, 2288, 2660, 3060, 3488, 3944, 4428, 4940, 5480, 6048, 6644, 7268, 7920, 8600, 9308, 10044, 10808, 11600, 12420, 13268, 14144, 15048, 15980, 16940, 17928, 18944, 19988, 21060, 22160, 23288, 24444, 25628, 26840
Offset: 0

Views

Author

Bruno Berselli, Jul 04 2018

Keywords

Comments

This is the case k = 9 of Sum_{i = 2..k} P(i,n) = (k - 1)*n*((k - 2)*n - (k - 6))/4, where P(k,n) = n*((k - 2)*n - (k - 4))/2 (see Crossrefs for similar sequences and "Square array in A139600" in Links section).
14*x + 9 is a square for x = a(n) or x = a(-n).

Crossrefs

Similar sequences (see the first comment): A000096 (k = 3), A045943 (k = 4), A049451 (k = 5), A033429 (k = 6), A167469 (k = 7), A152744 (k = 8), this sequence (k = 9), A152994 (k = 10).

Programs

  • GAP
    List([0..50], n -> 2*n*(7*n-3));
    
  • Julia
    [2*n*(7*n-3) for n in 0:50] |> println
  • Magma
    [2*n*(7*n-3): n in [0..50]];
    
  • Mathematica
    Table[2 n (7 n - 3), {n, 0, 50}]
    LinearRecurrence[{3,-3,1},{0,8,44},50] (* Harvey P. Dale, Jan 24 2021 *)
  • Maxima
    makelist(2*n*(7*n-3), n, 0, 50);
    
  • PARI
    vector(50, n, n--; 2*n*(7*n-3))
    
  • PARI
    concat(0, Vec(4*x*(2 + 5*x)/(1 - x)^3 + O(x^40))) \\ Colin Barker, Jul 05 2018
    
  • Python
    [2*n*(7*n-3) for n in range(50)]
    
  • Sage
    [2*n*(7*n-3) for n in (0..50)]
    

Formula

O.g.f.: 4*x*(2 + 5*x)/(1 - x)^3.
E.g.f.: 2*x*(4 + 7*x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 4*A218471(n).

A167467 a(n) = 25*n^3 - n*(5*n+1)/2 + 1.

Original entry on oeis.org

23, 190, 652, 1559, 3061, 5308, 8450, 12637, 18019, 24746, 32968, 42835, 54497, 68104, 83806, 101753, 122095, 144982, 170564, 198991, 230413, 264980, 302842, 344149, 389051, 437698, 490240, 546827, 607609, 672736, 742358, 816625, 895687, 979694, 1068796
Offset: 1

Views

Author

A.K. Devaraj, Nov 05 2009

Keywords

Comments

Also the real part of f(x+n*f(x,y,z), y+n*f(x,y,z), z+n*f(x,y,z))/f(x,y,z) for f(x,y,z) = x^3+y^2+z at x=(-1+i*sqrt(3))/2, y=i and z=5.
If f(x,y,z) is a trivariate polynomial, f(x+n*f(x,y,z),y+n*f(x,y,z),z+n*f(x,y,z)) is congruent to 0 (mod f(x,y,z)).
The ratio f(x+n*f,y+n*f,z+n*f)/f of these two functions is decomposed into the real part (this sequence here), and the imaginary part. The imaginary part is 2*n*i + sqrt(3)*A167469(n)*i, where i=sqrt(-1) is the imaginary unit.

Examples

			f(x +f(x,y,z), y + f(x,y,z), z + f(x,y,z)) = (23 + 2i + 6*sqrt(3)*i)* f(x,y,z) at n=1.
		

Crossrefs

Programs

  • GAP
    List([1..50], n-> 25*n^3 - n*(5*n+1)/2 + 1); # G. C. Greubel, Sep 01 2019
  • Magma
    [25*n^3 - n*(5*n+1)/2 + 1: n in [1..50]]; // G. C. Greubel, Sep 01 2019
    
  • Maple
    f := proc(x,y,z) x^3+y^2+z ; end proc:
    A167467 := proc(n) local rho,a ,x,y,z; a := f(x+n*f(x,y,z),y+n*f(x,y,z),z+n*f(x,y,z))/f(x,y,z) ; rho := (-1+I*sqrt(3))/2 ; a := subs({x = rho, y=I,z=5},a) ; a := expand(a) ; Re(a) ; end:
    seq(A167467(n),n=1..50) ; # R. J. Mathar, Nov 12 2009
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{23,190,652,1559},50] (* Harvey P. Dale, Sep 28 2012 *)
  • PARI
    a(n)=1+25*n^3-n*(5*n+1)/2 \\ Charles R Greathouse IV, Jul 07 2013
    
  • Sage
    [25*n^3 - n*(5*n+1)/2 + 1 for n in (1..50)] # G. C. Greubel, Sep 01 2019
    

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: x*(23 + 98*x + 30*x^2 - x^3)/(1-x)^4.
E.g.f.: (2 + 44*x + 145*x^2 + 50*x^3)*exp(x)/2 -1. - G. C. Greubel, Apr 09 2016

Extensions

a(2) and a(3) corrected, definition simplified and sequence extended by R. J. Mathar, Nov 12 2009
Showing 1-2 of 2 results.