A316466 a(n) = 2*n*(7*n - 3).
0, 8, 44, 108, 200, 320, 468, 644, 848, 1080, 1340, 1628, 1944, 2288, 2660, 3060, 3488, 3944, 4428, 4940, 5480, 6048, 6644, 7268, 7920, 8600, 9308, 10044, 10808, 11600, 12420, 13268, 14144, 15048, 15980, 16940, 17928, 18944, 19988, 21060, 22160, 23288, 24444, 25628, 26840
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Bruno Berselli, Square array in A139600.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..50], n -> 2*n*(7*n-3));
-
Julia
[2*n*(7*n-3) for n in 0:50] |> println
-
Magma
[2*n*(7*n-3): n in [0..50]];
-
Mathematica
Table[2 n (7 n - 3), {n, 0, 50}] LinearRecurrence[{3,-3,1},{0,8,44},50] (* Harvey P. Dale, Jan 24 2021 *)
-
Maxima
makelist(2*n*(7*n-3), n, 0, 50);
-
PARI
vector(50, n, n--; 2*n*(7*n-3))
-
PARI
concat(0, Vec(4*x*(2 + 5*x)/(1 - x)^3 + O(x^40))) \\ Colin Barker, Jul 05 2018
-
Python
[2*n*(7*n-3) for n in range(50)]
-
Sage
[2*n*(7*n-3) for n in (0..50)]
Formula
O.g.f.: 4*x*(2 + 5*x)/(1 - x)^3.
E.g.f.: 2*x*(4 + 7*x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 4*A218471(n).
Comments