cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A152743 6 times pentagonal numbers: a(n) = 3*n*(3*n-1).

Original entry on oeis.org

0, 6, 30, 72, 132, 210, 306, 420, 552, 702, 870, 1056, 1260, 1482, 1722, 1980, 2256, 2550, 2862, 3192, 3540, 3906, 4290, 4692, 5112, 5550, 6006, 6480, 6972, 7482, 8010, 8556, 9120, 9702, 10302, 10920, 11556, 12210, 12882, 13572, 14280, 15006, 15750, 16512, 17292
Offset: 0

Views

Author

Omar E. Pol, Dec 12 2008

Keywords

Comments

a(n) is also the Wiener index of the windmill graph D(4,n). The windmill graph D(m,n) is the graph obtained by taking n copies of the complete graph K_m with a vertex in common (i.e. a bouquet of n pieces of K_m graphs). The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph. The Wiener index of D(m,n) is (1/2)n(m-1)[(m-1)(2n-1)+1]. For the Wiener indices of D(3,n), D(5,n), and D(6,n) see A033991, A028994, and A180577, respectively. - Emeric Deutsch, Sep 21 2010
a(n+1) gives the number of edges in a hexagon-like honeycomb built from A003215(n) congruent regular hexagons (see link). Example: a hexagon-like honeycomb consisting of 7 congruent regular hexagons has 1 core hexagon inside a perimeter of six hexagons. The perimeter consists of 18 external edges. There are 6 edges shared by the perimeter hexagons. The core hexagon has 6 edges. a(2) is the total number of edges, i.e. 18 + 6 + 6 = 30. - Ivan N. Ianakiev, Mar 10 2015

Crossrefs

Programs

Formula

a(n) = 9n^2 - 3n = A000326(n)*6.
a(n) = A049450(n)*3 = A062741(n)*2. - Omar E. Pol, Dec 15 2008
a(n) = a(n-1) + 18*n - 12 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
G.f.: -((6*x*(2*x+1))/(x-1)^3). - Harvey P. Dale, Jun 30 2011
E.g.f.: 3*x*(2+3*x)*exp(x). - G. C. Greubel, Sep 01 2018
From Amiram Eldar, Feb 27 2022: (Start)
Sum_{n>=1} 1/a(n) = (9*log(3) - sqrt(3)*Pi)/18.
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi*sqrt(3) - 6*log(2))/9. (End)

Extensions

Converted reference to link by Omar E. Pol, Oct 07 2010

A316466 a(n) = 2*n*(7*n - 3).

Original entry on oeis.org

0, 8, 44, 108, 200, 320, 468, 644, 848, 1080, 1340, 1628, 1944, 2288, 2660, 3060, 3488, 3944, 4428, 4940, 5480, 6048, 6644, 7268, 7920, 8600, 9308, 10044, 10808, 11600, 12420, 13268, 14144, 15048, 15980, 16940, 17928, 18944, 19988, 21060, 22160, 23288, 24444, 25628, 26840
Offset: 0

Views

Author

Bruno Berselli, Jul 04 2018

Keywords

Comments

This is the case k = 9 of Sum_{i = 2..k} P(i,n) = (k - 1)*n*((k - 2)*n - (k - 6))/4, where P(k,n) = n*((k - 2)*n - (k - 4))/2 (see Crossrefs for similar sequences and "Square array in A139600" in Links section).
14*x + 9 is a square for x = a(n) or x = a(-n).

Crossrefs

Similar sequences (see the first comment): A000096 (k = 3), A045943 (k = 4), A049451 (k = 5), A033429 (k = 6), A167469 (k = 7), A152744 (k = 8), this sequence (k = 9), A152994 (k = 10).

Programs

  • GAP
    List([0..50], n -> 2*n*(7*n-3));
    
  • Julia
    [2*n*(7*n-3) for n in 0:50] |> println
  • Magma
    [2*n*(7*n-3): n in [0..50]];
    
  • Mathematica
    Table[2 n (7 n - 3), {n, 0, 50}]
    LinearRecurrence[{3,-3,1},{0,8,44},50] (* Harvey P. Dale, Jan 24 2021 *)
  • Maxima
    makelist(2*n*(7*n-3), n, 0, 50);
    
  • PARI
    vector(50, n, n--; 2*n*(7*n-3))
    
  • PARI
    concat(0, Vec(4*x*(2 + 5*x)/(1 - x)^3 + O(x^40))) \\ Colin Barker, Jul 05 2018
    
  • Python
    [2*n*(7*n-3) for n in range(50)]
    
  • Sage
    [2*n*(7*n-3) for n in (0..50)]
    

Formula

O.g.f.: 4*x*(2 + 5*x)/(1 - x)^3.
E.g.f.: 2*x*(4 + 7*x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 4*A218471(n).

A139607 a(n) = 21*n + 7.

Original entry on oeis.org

7, 28, 49, 70, 91, 112, 133, 154, 175, 196, 217, 238, 259, 280, 301, 322, 343, 364, 385, 406, 427, 448, 469, 490, 511, 532, 553, 574, 595, 616, 637, 658, 679, 700, 721, 742, 763, 784, 805, 826, 847, 868, 889, 910, 931, 952, 973, 994
Offset: 0

Views

Author

Omar E. Pol, Apr 27 2008

Keywords

Comments

Numbers of the 7th column of positive numbers in the square array of nonnegative and polygonal numbers A139600.
7th transversal numbers (or 7-transversal numbers): (A000217(7)-7)*n + 7.

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189. - From N. J. A. Sloane, Dec 01 2012

Crossrefs

Programs

Formula

a(n) = A057145(n+2,7).
G.f.: 7*(1+2*x)/(x-1)^2. - R. J. Mathar, Jul 28 2016
From Elmo R. Oliveira, Apr 12 2024: (Start)
E.g.f.: 7*exp(x)*(1 + 3*x).
a(n) = 7*A016777(n) = A008603(n) + 7 = A152744(n+1) - A152744(n).
a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)

A154894 Fibonacci numbers whose number of proper divisors is prime.

Original entry on oeis.org

8, 21, 34, 55, 377, 610, 987, 4181, 10946, 17711, 46368, 75025, 121393, 1346269, 3524578, 5702887, 9227465, 24157817, 39088169, 63245986, 165580141, 701408733, 1134903170, 1836311903, 7778742049, 12586269025, 20365011074, 53316291173
Offset: 1

Views

Author

Omar E. Pol, Jan 25 2009

Keywords

Examples

			8 is member because the number of proper divisors of 8 is 3, a prime number.
		

Crossrefs

Programs

  • Mathematica
    Fibonacci[Select[Range[60], PrimeQ[DivisorSigma[0, Fibonacci[ # ]] - 1] &]] (* Stefan Steinerberger, Jan 31 2009 *)

Extensions

More terms from Stefan Steinerberger, Jan 31 2009
Showing 1-4 of 4 results.