cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A193053 a(n) = (14*n*(n+3) + (2*n-5)*(-1)^n + 21)/16.

Original entry on oeis.org

1, 5, 10, 17, 26, 36, 49, 62, 79, 95, 116, 135, 160, 182, 211, 236, 269, 297, 334, 365, 406, 440, 485, 522, 571, 611, 664, 707, 764, 810, 871, 920, 985, 1037, 1106, 1161, 1234, 1292, 1369, 1430, 1511, 1575, 1660, 1727, 1816, 1886, 1979, 2052, 2149, 2225, 2326
Offset: 0

Views

Author

Bruno Berselli, Oct 20 2011 - based on remarks and sequences by Omar E. Pol

Keywords

Comments

For an origin of this sequence, see the numerical spiral illustrated in the Links section.

Crossrefs

Cf. A195020 (vertices of the numerical spiral in link).

Programs

  • Magma
    [(14*n*(n+3)+(2*n-5)*(-1)^n+21)/16: n in [0..50]];
  • Mathematica
    Table[(14*n*(n + 3) + (2*n - 5)*(-1)^n + 21)/16, {n, 0, 50}] (* Vincenzo Librandi, Mar 26 2013 *)
    LinearRecurrence[{1,2,-2,-1,1},{1,5,10,17,26},60] (* Harvey P. Dale, Jun 19 2020 *)
  • PARI
    for(n=0, 50, print1((14*n*(n+3)+(2*n-5)*(-1)^n+21)/16", "));
    

Formula

O.g.f.: (1 + 4*x + 3*x^2 - x^3)/((1 + x)^2*(1 - x)^3).
E.g.f.: (1/16)*((21 + 56*x + 14*x^2)*exp(x) - (5 + 2*x)*exp(-x)). - G. C. Greubel, Aug 19 2017
a(n) = A195020(n) + n + 1.
a(n) - a(-n-1) = A047336(n+1).
a(n+1) - a(-n) = A113804(n+1).
a(n+2) - a(n) = A047385(n+3).
a(n+4) - a(n) = A113803(n+4).
a(2*n) + a(2*n-1) = A069127(n+1).
a(2*n) - a(2*n-1) = A016813(n).
a(2*n+1) - a(2*n) = A016777(n+1).
a(n+2) + 2*a(n+1) + a(n) = A024966(n+2).

A198017 a(n) = n*(7*n + 11)/2 + 1.

Original entry on oeis.org

1, 10, 26, 49, 79, 116, 160, 211, 269, 334, 406, 485, 571, 664, 764, 871, 985, 1106, 1234, 1369, 1511, 1660, 1816, 1979, 2149, 2326, 2510, 2701, 2899, 3104, 3316, 3535, 3761, 3994, 4234, 4481, 4735, 4996, 5264, 5539, 5821, 6110, 6406, 6709, 7019, 7336, 7660, 7991
Offset: 0

Views

Author

Bruno Berselli, Oct 21 2011 - based on remarks and sequences by Omar E. Pol

Keywords

Comments

First bisection of A193053 (see also the numerical spiral illustrated in the Links section).
The inverse binomial transform yields 1, 9, 7, 0, 0 (0 continued).

Crossrefs

Cf. A195020 (vertices of the numerical spiral in link).
Cf. A017005 (first differences).

Programs

  • Magma
    [n*(7*n+11)/2+1: n in [0..47]];
  • Mathematica
    Table[(n(7n+11))/2+1,{n,0,60}] (* or *) LinearRecurrence[{3,-3,1},{1,10,26},60] (* Harvey P. Dale, Mar 03 2013 *)
  • PARI
    for(n=0, 47, print1(n*(7*n+11)/2+1", "));
    

Formula

G.f.: (1 + 7*x - x^2)/(1-x)^3.
a(n) = A195020(2*n) + 2*n + 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) = 2*a(n-1) - a(n-2) + 7.
From Elmo R. Oliveira, Dec 24 2024: (Start)
E.g.f.: exp(x)*(2 + 18*x + 7*x^2)/2.
a(n) = n + A001106(n+1). (End)

A195021 a(n) = n*(14*n - 11).

Original entry on oeis.org

0, 3, 34, 93, 180, 295, 438, 609, 808, 1035, 1290, 1573, 1884, 2223, 2590, 2985, 3408, 3859, 4338, 4845, 5380, 5943, 6534, 7153, 7800, 8475, 9178, 9909, 10668, 11455, 12270, 13113, 13984, 14883, 15810, 16765, 17748, 18759, 19798, 20865, 21960, 23083, 24234, 25413
Offset: 0

Views

Author

Omar E. Pol, Sep 07 2011

Keywords

Comments

Sequence found by reading the first two vertices [0, 3] together with the line from 34, in the direction 34, 93, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020, which is related to the primitive Pythagorean triple [3, 4, 5]. For another version see A195030.

Crossrefs

Cf. numbers of the form n*(n*k - k + 6)/2, this sequence is the case k=28: see Comments lines of A226492.

Programs

Formula

a(n) = 14*n^2 - 11*n.
From Colin Barker, Apr 09 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(3+25*x)/(1-x)^3. (End)
E.g.f.: exp(x)*x*(3 + 14*x). - Elmo R. Oliveira, Dec 30 2024

Extensions

Edited by Bruno Berselli, Oct 18 2011

A195023 a(n) = 14*n^2 - 4*n.

Original entry on oeis.org

0, 10, 48, 114, 208, 330, 480, 658, 864, 1098, 1360, 1650, 1968, 2314, 2688, 3090, 3520, 3978, 4464, 4978, 5520, 6090, 6688, 7314, 7968, 8650, 9360, 10098, 10864, 11658, 12480, 13330, 14208, 15114, 16048, 17010, 18000, 19018, 20064, 21138, 22240, 23370, 24528, 25714
Offset: 0

Views

Author

Omar E. Pol, Oct 13 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 10, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the one of the semi-axis of the square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].

Crossrefs

Programs

Formula

a(n) = 2*A135703(n). - Bruno Berselli, Oct 13 2011
From Colin Barker, Apr 09 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 2*x*(5+9*x)/(1-x)^3. (End)
E.g.f.: 2*exp(x)*x*(5 + 7*x). - Elmo R. Oliveira, Dec 30 2024

Extensions

Corrected by Vincenzo Librandi, Oct 14 2011

A195024 a(n) = n*(14*n - 1).

Original entry on oeis.org

0, 13, 54, 123, 220, 345, 498, 679, 888, 1125, 1390, 1683, 2004, 2353, 2730, 3135, 3568, 4029, 4518, 5035, 5580, 6153, 6754, 7383, 8040, 8725, 9438, 10179, 10948, 11745, 12570, 13423, 14304, 15213, 16150, 17115, 18108, 19129, 20178, 21255, 22360, 23493, 24654, 25843
Offset: 0

Views

Author

Omar E. Pol, Oct 13 2011

Keywords

Comments

Related to the primitive Pythagorean triple [3, 4, 5].
Sequence found by reading the line from 0, in the direction 0, 13, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the one of the semi-diagonals of the square spiral.
Also sequence found by reading the line from 0, in the direction 0, 13, ..., in the square spiral whose vertices are the generalized 9-gonal numbers A118277. - Omar E. Pol, Jul 28 2012

Crossrefs

Programs

Formula

a(n) = 14*n^2 - n.
From Colin Barker, Apr 09 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(13+15*x)/(1-x)^3. (End)
E.g.f.: exp(x)*x*(13 + 14*x). - Elmo R. Oliveira, Jan 12 2025

A195025 a(n) = n*(14*n + 3).

Original entry on oeis.org

0, 17, 62, 135, 236, 365, 522, 707, 920, 1161, 1430, 1727, 2052, 2405, 2786, 3195, 3632, 4097, 4590, 5111, 5660, 6237, 6842, 7475, 8136, 8825, 9542, 10287, 11060, 11861, 12690, 13547, 14432, 15345, 16286, 17255, 18252, 19277, 20330, 21411, 22520, 23657, 24822, 26015
Offset: 0

Views

Author

Omar E. Pol, Oct 13 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 17, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the one of the semi-axis of the square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].
a(k) is a square for k = (3/56)*((449 + 120*sqrt(14))^n + (449 - 120*sqrt(14))^n - 2). - Bruno Berselli, Oct 18 2011

Crossrefs

Programs

Formula

a(n) = 14*n^2 + 3*n.
G.f.: x*(17+11*x)/(1-x)^3. - Bruno Berselli, Oct 18 2011
From Elmo R. Oliveira, Dec 30 2024: (Start)
E.g.f.: exp(x)*x*(17 + 14*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

Name suggested by Bruno Berselli, Oct 13 2011

A195026 a(n) = 7*n*(2*n + 1).

Original entry on oeis.org

0, 21, 70, 147, 252, 385, 546, 735, 952, 1197, 1470, 1771, 2100, 2457, 2842, 3255, 3696, 4165, 4662, 5187, 5740, 6321, 6930, 7567, 8232, 8925, 9646, 10395, 11172, 11977, 12810, 13671, 14560, 15477, 16422, 17395, 18396, 19425, 20482, 21567, 22680, 23821, 24990
Offset: 0

Views

Author

Omar E. Pol, Oct 13 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 21, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. Semi-diagonal opposite to A195320 in the same square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].
Sum of the numbers from 6*n to 8*n. - Wesley Ivan Hurt, Dec 23 2015

Crossrefs

Programs

Formula

a(n) = 14*n^2 + 7*n.
a(n) = 7*A014105(n). - Bruno Berselli, Oct 13 2011
From Colin Barker, Apr 09 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: 7*x*(3+x)/(1-x)^3. (End)
a(n) = Sum_{i=6*n..8*n} i. - Wesley Ivan Hurt, Dec 23 2015
E.g.f.: 7*exp(x)*x*(3 + 2*x). - Elmo R. Oliveira, Dec 29 2024

A195027 a(n) = 2*n*(7*n + 5).

Original entry on oeis.org

0, 24, 76, 156, 264, 400, 564, 756, 976, 1224, 1500, 1804, 2136, 2496, 2884, 3300, 3744, 4216, 4716, 5244, 5800, 6384, 6996, 7636, 8304, 9000, 9724, 10476, 11256, 12064, 12900, 13764, 14656, 15576, 16524, 17500, 18504, 19536, 20596, 21684, 22800, 23944, 25116, 26316
Offset: 0

Views

Author

Omar E. Pol, Oct 13 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 24, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. Semi-axis opposite to A195023 in the same square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].

Crossrefs

Programs

Formula

a(n) = 14*n^2 + 10*n.
a(n) = 4*A179986(n). - Bruno Berselli, Oct 13 2011
G.f.: 4*x*(6+x)/(1-x)^3. - Colin Barker, Jan 09 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=24, a(2)=76. - Harvey P. Dale, Jul 24 2012
E.g.f.: 2*exp(x)*x*(12 + 7*x). - Elmo R. Oliveira, Dec 30 2024

A195028 a(n) = n*(14*n + 13).

Original entry on oeis.org

0, 27, 82, 165, 276, 415, 582, 777, 1000, 1251, 1530, 1837, 2172, 2535, 2926, 3345, 3792, 4267, 4770, 5301, 5860, 6447, 7062, 7705, 8376, 9075, 9802, 10557, 11340, 12151, 12990, 13857, 14752, 15675, 16626, 17605, 18612, 19647, 20710, 21801, 22920, 24067, 25242
Offset: 0

Views

Author

Omar E. Pol, Oct 13 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 27, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. Numbers opposite to the semi-diagonal A195024 in the same square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].

Crossrefs

Programs

Formula

a(n) = 14*n^2 + 13*n.
G.f.: x*(27+x)/(1-x)^3. - Colin Barker, Jan 09 2012
From Elmo R. Oliveira, Dec 30 2024: (Start)
E.g.f.: exp(x)*x*(27 + 14*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

Name suggested by Bruno Berselli, Oct 13 2011

A195029 a(n) = n*(14*n + 13) + 3.

Original entry on oeis.org

3, 30, 85, 168, 279, 418, 585, 780, 1003, 1254, 1533, 1840, 2175, 2538, 2929, 3348, 3795, 4270, 4773, 5304, 5863, 6450, 7065, 7708, 8379, 9078, 9805, 10560, 11343, 12154, 12993, 13860, 14755, 15678, 16629, 17608, 18615, 19650, 20713, 21804, 22923, 24070, 25245
Offset: 0

Views

Author

Omar E. Pol, Sep 07 2011

Keywords

Comments

Sequence found by reading the line from 3, in the direction 3, 30, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the semi-diagonal parallel to A195024 and also parallel to A195028 in the same square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].
56*a(n) + 1 is a perfect square. - Bruno Berselli, Feb 14 2017

Crossrefs

Programs

Formula

a(n) = 14*n^2 + 13*n + 3 = A195028(n) + 3 = (2*n + 1)*(7*n + 3).
From Colin Barker, Apr 09 2012: (Start)
G.f.: (3 + 21*x + 4*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Elmo R. Oliveira, Dec 29 2024: (Start)
E.g.f.: exp(x)*(3 + 27*x + 14*x^2).
a(n) = A005408(n)*A017017(n) = A022264(2*n+1). (End)

Extensions

Edited by Bruno Berselli, Feb 14 2017
Showing 1-10 of 11 results. Next