cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 129 results. Next

A001477 The nonnegative integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 0

Views

Author

Keywords

Comments

Although this is a list, and lists normally have offset 1, it seems better to make an exception in this case. - N. J. A. Sloane, Mar 13 2010
The subsequence 0,1,2,3,4 gives the known values of n such that 2^(2^n)+1 is a prime (see A019434, the Fermat primes). - N. J. A. Sloane, Jun 16 2010
Also: The identity map, defined on the set of nonnegative integers. The restriction to the positive integers yields the sequence A000027. - M. F. Hasler, Nov 20 2013
The number of partitions of 2n into exactly 2 parts. - Colin Barker, Mar 22 2015
The number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 8960 or 168.- Philippe A.J.G. Chevalier, Dec 29 2015
Partial sums give A000217. - Omar E. Pol, Jul 26 2018
First differences are A000012 (the "all 1's" sequence). - M. F. Hasler, May 30 2020
See A061579 for the transposed infinite square matrix, or triangle with rows reversed. - M. F. Hasler, Nov 09 2021
This is the unique sequence (a(n)) that satisfies the inequality a(n+1) > a(a(n)) for all n in N. This simple and surprising result comes from the 6th problem proposed by Bulgaria during the second day of the 19th IMO (1977) in Belgrade (see link and reference). - Bernard Schott, Jan 25 2023

Examples

			Triangular view:
   0
   1   2
   3   4   5
   6   7   8   9
  10  11  12  13  14
  15  16  17  18  19  20
  21  22  23  24  25  26  27
  28  29  30  31  32  33  34  35
  36  37  38  39  40  41  42  43  44
  45  46  47  48  49  50  51  52  53  54
		

References

  • Maurice Protat, Des Olympiades à l'Agrégation, suite vérifiant f(n+1) > f(f(n)), Problème 7, pp. 31-32, Ellipses, Paris 1997.

Crossrefs

Cf. A000027 (n>=1).
Cf. A000012 (first differences).
Partial sums of A057427. - Jeremy Gardiner, Sep 08 2002
Cf. A038608 (alternating signs), A001787 (binomial transform).
Cf. A055112.
Cf. Boustrophedon transforms: A231179, A000737.
Cf. A245422.
Number of orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A115067, A008586, A008585, A005843, A000217.
When written as an array, the rows/columns are A000217, A000124, A152948, A152950, A145018, A167499, A166136, A167487... and A000096, A034856, A055998, A046691, A052905, A055999... (with appropriate offsets); cf. analogous lists for A000027 in A185787.
Cf. A000290.
Cf. A061579 (transposed matrix / reversed triangle).

Programs

Formula

a(n) = n.
a(0) = 0, a(n) = a(n-1) + 1.
G.f.: x/(1-x)^2.
Multiplicative with a(p^e) = p^e. - David W. Wilson, Aug 01 2001
When seen as array: T(k, n) = n + (k+n)*(k+n+1)/2. Main diagonal is 2*n*(n+1) (A046092), antidiagonal sums are n*(n+1)*(n+2)/2 (A027480). - Ralf Stephan, Oct 17 2004
Dirichlet generating function: zeta(s-1). - Franklin T. Adams-Watters, Sep 11 2005
E.g.f.: x*e^x. - Franklin T. Adams-Watters, Sep 11 2005
a(0)=0, a(1)=1, a(n) = 2*a(n-1) - a(n-2). - Jaume Oliver Lafont, May 07 2008
Alternating partial sums give A001057 = A000217 - 2*(A008794). - Eric Desbiaux, Oct 28 2008
a(n) = 2*A080425(n) + 3*A008611(n-3), n>1. - Eric Desbiaux, Nov 15 2009
a(n) = A007966(n)*A007967(n). - Reinhard Zumkeller, Jun 18 2011
a(n) = Sum_{k>=0} A030308(n,k)*2^k. - Philippe Deléham, Oct 20 2011
a(n) = 2*A028242(n-1) + (-1)^n*A000034(n-1). - R. J. Mathar, Jul 20 2012
a(n+1) = det(C(i+1,j), 1 <= i, j <= n), where C(n,k) are binomial coefficients. - Mircea Merca, Apr 06 2013
a(n-1) = floor(n/e^(1/n)) for n > 0. - Richard R. Forberg, Jun 22 2013
a(n) = A000027(n) for all n>0.
a(n) = floor(cot(1/(n+1))). - Clark Kimberling, Oct 08 2014
a(0)=0, a(n>0) = 2*z(-1)^[( |z|/z + 3 )/2] + ( |z|/z - 1 )/2 for z = A130472(n>0); a 1 to 1 correspondence between integers and naturals. - Adriano Caroli, Mar 29 2015
G.f. as triangle: x*(1 + (x^2 - 5*x + 2)*y + x*(2*x - 1)*y^2)/((1 - x)^3*(1 - x*y)^3). - Stefano Spezia, Jul 22 2025

A002378 Oblong (or promic, pronic, or heteromecic) numbers: a(n) = n*(n+1).

Original entry on oeis.org

0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260, 1332, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2070, 2162, 2256, 2352, 2450, 2550
Offset: 0

Views

Author

Keywords

Comments

4*a(n) + 1 are the odd squares A016754(n).
The word "pronic" (used by Dickson) is incorrect. - Michael Somos
According to the 2nd edition of Webster, the correct word is "promic". - R. K. Guy
a(n) is the number of minimal vectors in the root lattice A_n (see Conway and Sloane, p. 109).
Let M_n denote the n X n matrix M_n(i, j) = (i + j); then the characteristic polynomial of M_n is x^(n-2) * (x^2 - a(n)*x - A002415(n)). - Benoit Cloitre, Nov 09 2002
The greatest LCM of all pairs (j, k) for j < k <= n for n > 1. - Robert G. Wilson v, Jun 19 2004
First differences are a(n+1) - a(n) = 2*n + 2 = 2, 4, 6, ... (while first differences of the squares are (n+1)^2 - n^2 = 2*n + 1 = 1, 3, 5, ...). - Alexandre Wajnberg, Dec 29 2005
25 appended to these numbers corresponds to squares of numbers ending in 5 (i.e., to squares of A017329). - Lekraj Beedassy, Mar 24 2006
A rapid (mental) multiplication/factorization technique -- a generalization of Lekraj Beedassy's comment: For all bases b >= 2 and positive integers n, c, d, k with c + d = b^k, we have (n*b^k + c)*(n*b^k + d) = a(n)*b^(2*k) + c*d. Thus the last 2*k base-b digits of the product are exactly those of c*d -- including leading 0(s) as necessary -- with the preceding base-b digit(s) the same as a(n)'s. Examples: In decimal, 113*117 = 13221 (as n = 11, b = 10 = 3 + 7, k = 1, 3*7 = 21, and a(11) = 132); in octal, 61*67 = 5207 (52 is a(6) in octal). In particular, for even b = 2*m (m > 0) and c = d = m, such a product is a square of this type. Decimal factoring: 5609 is immediately seen to be 71*79. Likewise, 120099 = 301*399 (k = 2 here) and 99990000001996 = 9999002*9999998 (k = 3). - Rick L. Shepherd, Jul 24 2021
Number of circular binary words of length n + 1 having exactly one occurrence of 01. Example: a(2) = 6 because we have 001, 010, 011, 100, 101 and 110. Column 1 of A119462. - Emeric Deutsch, May 21 2006
The sequence of iterated square roots sqrt(N + sqrt(N + ...)) has for N = 1, 2, ... the limit (1 + sqrt(1 + 4*N))/2. For N = a(n) this limit is n + 1, n = 1, 2, .... For all other numbers N, N >= 1, this limit is not a natural number. Examples: n = 1, a(1) = 2: sqrt(2 + sqrt(2 + ...)) = 1 + 1 = 2; n = 2, a(2) = 6: sqrt(6 + sqrt(6 + ...)) = 1 + 2 = 3. - Wolfdieter Lang, May 05 2006
Nonsquare integers m divisible by ceiling(sqrt(m)), except for m = 0. - Max Alekseyev, Nov 27 2006
The number of off-diagonal elements of an (n + 1) X (n + 1) matrix. - Artur Jasinski, Jan 11 2007
a(n) is equal to the number of functions f:{1, 2} -> {1, 2, ..., n + 1} such that for a fixed x in {1, 2} and a fixed y in {1, 2, ..., n + 1} we have f(x) <> y. - Aleksandar M. Janjic and Milan Janjic, Mar 13 2007
Numbers m >= 0 such that round(sqrt(m+1)) - round(sqrt(m)) = 1. - Hieronymus Fischer, Aug 06 2007
Numbers m >= 0 such that ceiling(2*sqrt(m+1)) - 1 = 1 + floor(2*sqrt(m)). - Hieronymus Fischer, Aug 06 2007
Numbers m >= 0 such that fract(sqrt(m+1)) > 1/2 and fract(sqrt(m)) < 1/2 where fract(x) is the fractional part (fract(x) = x - floor(x), x >= 0). - Hieronymus Fischer, Aug 06 2007
X values of solutions to the equation 4*X^3 + X^2 = Y^2. To find Y values: b(n) = n(n+1)(2n+1). - Mohamed Bouhamida, Nov 06 2007
Nonvanishing diagonal of A132792, the infinitesimal Lah matrix, so "generalized factorials" composed of a(n) are given by the elements of the Lah matrix, unsigned A111596, e.g., a(1)*a(2)*a(3) / 3! = -A111596(4,1) = 24. - Tom Copeland, Nov 20 2007
If Y is a 2-subset of an n-set X then, for n >= 2, a(n-2) is the number of 2-subsets and 3-subsets of X having exactly one element in common with Y. - Milan Janjic, Dec 28 2007
a(n) coincides with the vertex of a parabola of even width in the Redheffer matrix, directed toward zero. An integer p is prime if and only if for all integer k, the parabola y = kx - x^2 has no integer solution with 1 < x < k when y = p; a(n) corresponds to odd k. - Reikku Kulon, Nov 30 2008
The third differences of certain values of the hypergeometric function 3F2 lead to the squares of the oblong numbers i.e., 3F2([1, n + 1, n + 1], [n + 2, n + 2], z = 1) - 3*3F2([1, n + 2, n + 2], [n + 3, n + 3], z = 1) + 3*3F2([1, n + 3, n + 3], [n + 4, n + 4], z = 1) - 3F2([1, n + 4, n + 4], [n + 5, n + 5], z = 1) = (1/((n+2)*(n+3)))^2 for n = -1, 0, 1, 2, ... . See also A162990. - Johannes W. Meijer, Jul 21 2009
Generalized factorials, [a.(n!)] = a(n)*a(n-1)*...*a(0) = A010790(n), with a(0) = 1 are related to A001263. - Tom Copeland, Sep 21 2011
For n > 1, a(n) is the number of functions f:{1, 2} -> {1, ..., n + 2} where f(1) > 1 and f(2) > 2. Note that there are n + 1 possible values for f(1) and n possible values for f(2). For example, a(3) = 12 since there are 12 functions f from {1, 2} to {1, 2, 3, 4, 5} with f(1) > 1 and f(2) > 2. - Dennis P. Walsh, Dec 24 2011
a(n) gives the number of (n + 1) X (n + 1) symmetric (0, 1)-matrices containing two ones (see [Cameron]). - L. Edson Jeffery, Feb 18 2012
a(n) is the number of positions of a domino in a rectangled triangular board with both legs equal to n + 1. - César Eliud Lozada, Sep 26 2012
a(n) is the number of ordered pairs (x, y) in [n+2] X [n+2] with |x-y| > 1. - Dennis P. Walsh, Nov 27 2012
a(n) is the number of injective functions from {1, 2} into {1, 2, ..., n + 1}. - Dennis P. Walsh, Nov 27 2012
a(n) is the sum of the positive differences of the partition parts of 2n + 2 into exactly two parts (see example). - Wesley Ivan Hurt, Jun 02 2013
a(n)/a(n-1) is asymptotic to e^(2/n). - Richard R. Forberg, Jun 22 2013
Number of positive roots in the root system of type D_{n + 1} (for n > 2). - Tom Edgar, Nov 05 2013
Number of roots in the root system of type A_n (for n > 0). - Tom Edgar, Nov 05 2013
From Felix P. Muga II, Mar 18 2014: (Start)
a(m), for m >= 1, are the only positive integer values t for which the Binet-de Moivre formula for the recurrence b(n) = b(n-1) + t*b(n-2) with b(0) = 0 and b(1) = 1 has a root of a square. PROOF (as suggested by Wolfdieter Lang, Mar 26 2014): The sqrt(1 + 4t) appearing in the zeros r1 and r2 of the characteristic equation is (a positive) integer for positive integer t precisely if 4t + 1 = (2m + 1)^2, that is t = a(m), m >= 1. Thus, the characteristic roots are integers: r1 = m + 1 and r2 = -m.
Let m > 1 be an integer. If b(n) = b(n-1) + a(m)*b(n-2), n >= 2, b(0) = 0, b(1) = 1, then lim_{n->oo} b(n+1)/b(n) = m + 1. (End)
Cf. A130534 for relations to colored forests, disposition of flags on flagpoles, and colorings of the vertices (chromatic polynomial) of the complete graphs (here simply K_2). - Tom Copeland, Apr 05 2014
The set of integers k for which k + sqrt(k + sqrt(k + sqrt(k + sqrt(k + ...) ... is an integer. - Leslie Koller, Apr 11 2014
a(n-1) is the largest number k such that (n*k)/(n+k) is an integer. - Derek Orr, May 22 2014
Number of ways to place a domino and a singleton on a strip of length n - 2. - Ralf Stephan, Jun 09 2014
With offset 1, this appears to give the maximal number of crossings between n nonconcentric circles of equal radius. - Felix Fröhlich, Jul 14 2014
For n > 1, the harmonic mean of the n values a(1) to a(n) is n + 1. The lowest infinite sequence of increasing positive integers whose cumulative harmonic mean is integral. - Ian Duff, Feb 01 2015
a(n) is the maximum number of queens of one color that can coexist without attacking one queen of the opponent's color on an (n+2) X (n+2) chessboard. The lone queen can be placed in any position on the perimeter of the board. - Bob Selcoe, Feb 07 2015
With a(0) = 1, a(n-1) is the smallest positive number not in the sequence such that Sum_{i = 1..n} 1/a(i-1) has a denominator equal to n. - Derek Orr, Jun 17 2015
The positive members of this sequence are a proper subsequence of the so-called 1-happy couple products A007969. See the W. Lang link there, eq. (4), with Y_0 = 1, with a table at the end. - Wolfdieter Lang, Sep 19 2015
For n > 0, a(n) is the reciprocal of the area bounded above by y = x^(n-1) and below by y = x^n for x in the interval [0, 1]. Summing all such areas visually demonstrates the formula below giving Sum_{n >= 1} 1/a(n) = 1. - Rick L. Shepherd, Oct 26 2015
It appears that, except for a(0) = 0, this is the set of positive integers n such that x*floor(x) = n has no solution. (For example, to get 3, take x = -3/2.) - Melvin Peralta, Apr 14 2016
If two independent real random variables, x and y, are distributed according to the same exponential distribution: pdf(x) = lambda * exp(-lambda * x), lambda > 0, then the probability that n - 1 <= x/y < n is given by 1/a(n). - Andres Cicuttin, Dec 03 2016
a(n) is equal to the sum of all possible differences between n different pairs of consecutive odd numbers (see example). - Miquel Cerda, Dec 04 2016
a(n+1) is the dimension of the space of vector fields in the plane with polynomial coefficients up to order n. - Martin Licht, Dec 04 2016
It appears that a(n) + 3 is the area of the largest possible pond in a square (A268311). - Craig Knecht, May 04 2017
Also the number of 3-cycles in the (n+3)-triangular honeycomb acute knight graph. - Eric W. Weisstein, Jul 27 2017
Also the Wiener index of the (n+2)-wheel graph. - Eric W. Weisstein, Sep 08 2017
The left edge of a Floyd's triangle that consists of even numbers: 0; 2, 4; 6, 8, 10; 12, 14, 16, 18; 20, 22, 24, 26, 28; ... giving 0, 2, 6, 12, 20, ... The right edge generates A028552. - Waldemar Puszkarz, Feb 02 2018
a(n+1) is the order of rowmotion on a poset obtained by adjoining a unique minimal (or maximal) element to a disjoint union of at least two chains of n elements. - Nick Mayers, Jun 01 2018
From Juhani Heino, Feb 05 2019: (Start)
For n > 0, 1/a(n) = n/(n+1) - (n-1)/n.
For example, 1/6 = 2/3 - 1/2; 1/12 = 3/4 - 2/3.
Corollary of this:
Take 1/2 pill.
Next day, take 1/6 pill. 1/2 + 1/6 = 2/3, so your daily average is 1/3.
Next day, take 1/12 pill. 2/3 + 1/12 = 3/4, so your daily average is 1/4.
And so on. (End)
From Bernard Schott, May 22 2020: (Start)
For an oblong number m >= 6 there exists a Euclidean division m = d*q + r with q < r < d which are in geometric progression, in this order, with a common integer ratio b. For b >= 2 and q >= 1, the Euclidean division is m = qb*(qb+1) = qb^2 * q + qb where (q, qb, qb^2) are in geometric progression.
Some examples with distinct ratios and quotients:
6 | 4 30 | 25 42 | 18
----- ----- -----
2 | 1 , 5 | 1 , 6 | 2 ,
and also:
42 | 12 420 | 100
----- -----
6 | 3 , 20 | 4 .
Some oblong numbers also satisfy a Euclidean division m = d*q + r with q < r < d that are in geometric progression in this order but with a common noninteger ratio b > 1 (see A335064). (End)
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [n; {2, 2n}]. For n=1, this collapses to [1; {2}]. - Magus K. Chu, Sep 09 2022
a(n-2) is the maximum irregularity over all trees with n vertices. The extremal graphs are stars. (The irregularity of a graph is the sum of the differences between the degrees over all edges of the graph.) - Allan Bickle, May 29 2023
For n > 0, number of diagonals in a regular 2*(n+1)-gon that are not parallel to any edge (cf. A367204). - Paolo Xausa, Mar 30 2024
a(n-1) is the maximum Zagreb index over all trees with n vertices. The extremal graphs are stars. (The Zagreb index of a graph is the sum of the squares of the degrees over all vertices of the graph.) - Allan Bickle, Apr 11 2024
For n >= 1, a(n) is the determinant of the distance matrix of a cycle graph on 2*n + 1 vertices (if the length of the cycle is even such a determinant is zero). - Miquel A. Fiol, Aug 20 2024
For n > 1, the continued fraction expansion of sqrt(16*a(n)) is [2n+1; {1, 2n-1, 1, 8n+2}]. - Magus K. Chu, Nov 20 2024
For n>=2, a(n) is the number of faces on a n+1-zone rhombic zonohedron. Each pair of a collection of great circles on a sphere intersects at two points, so there are 2*binomial(n+1,2) intersections. The dual of the implied polyhedron is a rhombic zonohedron, its faces corresponding to the intersections. - Shel Kaphan, Aug 12 2025

Examples

			a(3) = 12, since 2(3)+2 = 8 has 4 partitions with exactly two parts: (7,1), (6,2), (5,3), (4,4). Taking the positive differences of the parts in each partition and adding, we get: 6 + 4 + 2 + 0 = 12. - _Wesley Ivan Hurt_, Jun 02 2013
G.f. = 2*x + 6*x^2 + 12*x^3 + 20*x^4 + 30*x^5 + 42*x^6 + 56*x^7 + ... - _Michael Somos_, May 22 2014
From _Miquel Cerda_, Dec 04 2016: (Start)
a(1) = 2, since 45-43 = 2;
a(2) = 6, since 47-45 = 2 and 47-43 = 4, then 2+4 = 6;
a(3) = 12, since 49-47 = 2, 49-45 = 4, and 49-43 = 6, then 2+4+6 = 12. (End)
		

References

  • W. W. Berman and D. E. Smith, A Brief History of Mathematics, 1910, Open Court, page 67.
  • J. H. Conway and R. K. Guy, The Book of Numbers, 1996, p. 34.
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Chelsea, p. 357, 1952.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Chelsea, pp. 6, 232-233, 350 and 407, 1952.
  • H. Eves, An Introduction to the History of Mathematics, revised, Holt, Rinehart and Winston, 1964, page 72.
  • Nicomachus of Gerasa, Introduction to Arithmetic, translation by Martin Luther D'Ooge, Ann Arbor, University of Michigan Press, 1938, p. 254.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 291.
  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), pp. 980-981.
  • C. S. Ogilvy and J. T. Anderson, Excursions in Number Theory, Oxford University Press, 1966, pp. 61-62.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 54-55.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • F. J. Swetz, From Five Fingers to Infinity, Open Court, 1994, p. 219.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 2-6.

Crossrefs

Partial sums of A005843 (even numbers). Twice triangular numbers (A000217).
1/beta(n, 2) in A061928.
A036689 and A036690 are subsequences. Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488. - Bruno Berselli, Jun 10 2013
Row n=2 of A185651.
Cf. A007745, A169810, A213541, A005369 (characteristic function).
Cf. A281026. - Bruno Berselli, Jan 16 2017
Cf. A045943 (4-cycles in triangular honeycomb acute knight graph), A028896 (5-cycles), A152773 (6-cycles).
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
A335064 is a subsequence.
Second column of A003506.
Cf. A002378, A046092, A028896 (irregularities of maximal k-degenerate graphs).
Cf. A347213 (Dgf at s=4).
Cf. A002378, A152811, A371912 (Zagreb indices of maximal k-degenerate graphs).

Programs

Formula

G.f.: 2*x/(1-x)^3. - Simon Plouffe in his 1992 dissertation.
a(n) = a(n-1) + 2*n, a(0) = 0.
Sum_{n >= 1} a(n) = n*(n+1)*(n+2)/3 (cf. A007290, partial sums).
Sum_{n >= 1} 1/a(n) = 1. (Cf. Tijdeman)
Sum_{n >= 1} (-1)^(n+1)/a(n) = log(4) - 1 = A016627 - 1 [Jolley eq (235)].
1 = 1/2 + Sum_{n >= 1} 1/(2*a(n)) = 1/2 + 1/4 + 1/12 + 1/24 + 1/40 + 1/60 + ... with partial sums: 1/2, 3/4, 5/6, 7/8, 9/10, 11/12, 13/14, ... - Gary W. Adamson, Jun 16 2003
a(n)*a(n+1) = a(n*(n+2)); e.g., a(3)*a(4) = 12*20 = 240 = a(3*5). - Charlie Marion, Dec 29 2003
Sum_{k = 1..n} 1/a(k) = n/(n+1). - Robert G. Wilson v, Feb 04 2005
a(n) = A046092(n)/2. - Zerinvary Lajos, Jan 08 2006
Log 2 = Sum_{n >= 0} 1/a(2n+1) = 1/2 + 1/12 + 1/30 + 1/56 + 1/90 + ... = (1 - 1/2) + (1/3 - 1/4) + (1/5 - 1/6) + (1/7 - 1/8) + ... = Sum_{n >= 0} (-1)^n/(n+1) = A002162. - Gary W. Adamson, Jun 22 2003
a(n) = A110660(2*n). - N. J. A. Sloane, Sep 21 2005
a(n-1) = n^2 - n = A000290(n) - A000027(n) for n >= 1. a(n) is the inverse (frequency distribution) sequence of A000194(n). - Mohammad K. Azarian, Jul 26 2007
(2, 6, 12, 20, 30, ...) = binomial transform of (2, 4, 2). - Gary W. Adamson, Nov 28 2007
a(n) = 2*Sum_{i=0..n} i = 2*A000217(n). - Artur Jasinski, Jan 09 2007, and Omar E. Pol, May 14 2008
a(n) = A006503(n) - A000292(n). - Reinhard Zumkeller, Sep 24 2008
a(n) = A061037(4*n) = (n+1/2)^2 - 1/4 = ((2n+1)^2 - 1)/4 = (A005408(n)^2 - 1)/4. - Paul Curtz, Oct 03 2008 and Klaus Purath, Jan 13 2022
a(0) = 0, a(n) = a(n-1) + 1 + floor(x), where x is the minimal positive solution to fract(sqrt(a(n-1) + 1 + x)) = 1/2. - Hieronymus Fischer, Dec 31 2008
E.g.f.: (x+2)*x*exp(x). - Geoffrey Critzer, Feb 06 2009
Product_{i >= 2} (1-1/a(i)) = -2*sin(Pi*A001622)/Pi = -2*sin(A094886)/A000796 = 2*A146481. - R. J. Mathar, Mar 12 2009, Mar 15 2009
E.g.f.: ((-x+1)*log(-x+1)+x)/x^2 also Integral_{x = 0..1} ((-x+1)*log(-x+1) + x)/x^2 = zeta(2) - 1. - Stephen Crowley, Jul 11 2009
a(A007018(n)) = A007018(n+1), i.e., A007018(n+1) = A007018(n)-th oblong numbers. - Jaroslav Krizek, Sep 13 2009
a(n) = floor((n + 1/2)^2). a(n) = A035608(n) + A004526(n+1). - Reinhard Zumkeller, Jan 27 2010
a(n) = 2*(2*A006578(n) - A035608(n)). - Reinhard Zumkeller, Feb 07 2010
a(n-1) = floor(n^5/(n^3 + n^2 + 1)). - Gary Detlefs, Feb 11 2010
For n > 1: a(n) = A173333(n+1, n-1). - Reinhard Zumkeller, Feb 19 2010
a(n) = A004202(A000217(n)). - Reinhard Zumkeller, Feb 12 2011
a(n) = A188652(2*n+1) + 1. - Reinhard Zumkeller, Apr 13 2011
For n > 0 a(n) = 1/(Integral_{x=0..Pi/2} 2*(sin(x))^(2*n-1)*(cos(x))^3). - Francesco Daddi, Aug 02 2011
a(n) = A002061(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(0) = 0, a(n) = A005408(A034856(n)) - A005408(n-1). - Ivan N. Ianakiev, Dec 06 2012
a(n) = A005408(A000096(n)) - A005408(n). - Ivan N. Ianakiev, Dec 07 2012
a(n) = A001318(n) + A085787(n). - Omar E. Pol, Jan 11 2013
Sum_{n >= 1} 1/(a(n))^(2s) = Sum_{t = 1..2*s} binomial(4*s - t - 1, 2*s - 1) * ( (1 + (-1)^t)*zeta(t) - 1). See Arxiv:1301.6293. - R. J. Mathar, Feb 03 2013
a(n)^2 + a(n+1)^2 = 2 * a((n+1)^2), for n > 0. - Ivan N. Ianakiev, Apr 08 2013
a(n) = floor(n^2 * e^(1/n)) and a(n-1) = floor(n^2 / e^(1/n)). - Richard R. Forberg, Jun 22 2013
a(n) = 2*C(n+1, 2), for n >= 0. - Felix P. Muga II, Mar 11 2014
A005369(a(n)) = 1. - Reinhard Zumkeller, Jul 05 2014
Binomial transform of [0, 2, 2, 0, 0, 0, ...]. - Alois P. Heinz, Mar 10 2015
a(2n) = A002943(n) for n >= 0, a(2n-1) = A002939(n) for n >= 1. - M. F. Hasler, Oct 11 2015
For n > 0, a(n) = 1/(Integral_{x=0..1} (x^(n-1) - x^n) dx). - Rick L. Shepherd, Oct 26 2015
a(n) = A005902(n) - A007588(n). - Peter M. Chema, Jan 09 2016
For n > 0, a(n) = lim_{m -> oo} (1/m)*1/(Sum_{i=m*n..m*(n+1)} 1/i^2), with error of ~1/m. - Richard R. Forberg, Jul 27 2016
From Ilya Gutkovskiy, Jul 28 2016: (Start)
Dirichlet g.f.: zeta(s-2) + zeta(s-1).
Convolution of nonnegative integers (A001477) and constant sequence (A007395).
Sum_{n >= 0} a(n)/n! = 3*exp(1). (End)
From Charlie Marion, Mar 06 2020: (Start)
a(n)*a(n+2k-1) + (n+k)^2 = ((2n+1)*k + n^2)^2.
a(n)*a(n+2k) + k^2 = ((2n+1)*k + a(n))^2. (End)
Product_{n>=1} (1 + 1/a(n)) = cosh(sqrt(3)*Pi/2)/Pi. - Amiram Eldar, Jan 20 2021
A generalization of the Dec 29 2003 formula, a(n)*a(n+1) = a(n*(n+2)), follows. a(n)*a(n+k) = a(n*(n+k+1)) + (k-1)*n*(n+k+1). - Charlie Marion, Jan 02 2023
a(n) = A016742(n) - A049450(n). - Leo Tavares, Mar 15 2025

Extensions

Additional comments from Michael Somos
Comment and cross-reference added by Christopher Hunt Gribble, Oct 13 2009

A000326 Pentagonal numbers: a(n) = n*(3*n-1)/2.

Original entry on oeis.org

0, 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, 477, 532, 590, 651, 715, 782, 852, 925, 1001, 1080, 1162, 1247, 1335, 1426, 1520, 1617, 1717, 1820, 1926, 2035, 2147, 2262, 2380, 2501, 2625, 2752, 2882, 3015, 3151
Offset: 0

Views

Author

Keywords

Comments

The average of the first n (n > 0) pentagonal numbers is the n-th triangular number. - Mario Catalani (mario.catalani(AT)unito.it), Apr 10 2003
a(n) is the sum of n integers starting from n, i.e., 1, 2 + 3, 3 + 4 + 5, 4 + 5 + 6 + 7, etc. - Jon Perry, Jan 15 2004
Partial sums of 1, 4, 7, 10, 13, 16, ... (1 mod 3), a(2k) = k(6k-1), a(2k-1) = (2k-1)(3k-2). - Jon Perry, Sep 10 2004
Starting with offset 1 = binomial transform of [1, 4, 3, 0, 0, 0, ...]. Also, A004736 * [1, 3, 3, 3, ...]. - Gary W. Adamson, Oct 25 2007
If Y is a 3-subset of an n-set X then, for n >= 4, a(n-3) is the number of 4-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007
Solutions to the duplication formula 2*a(n) = a(k) are given by the index pairs (n, k) = (5,7), (5577, 7887), (6435661, 9101399), etc. The indices are integer solutions to the pair of equations 2(6n-1)^2 = 1 + y^2, k = (1+y)/6, so these n can be generated from the subset of numbers [1+A001653(i)]/6, any i, where these are integers, confined to the cases where the associated k=[1+A002315(i)]/6 are also integers. - R. J. Mathar, Feb 01 2008
a(n) is a binomial coefficient C(n,4) (A000332) if and only if n is a generalized pentagonal number (A001318). Also see A145920. - Matthew Vandermast, Oct 28 2008
Even octagonal numbers divided by 8. - Omar E. Pol, Aug 18 2011
Sequence found by reading the line from 0, in the direction 0, 5, ... and the line from 1, in the direction 1, 12, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Sep 08 2011
The hyper-Wiener index of the star-tree with n edges (see A196060, example). - Emeric Deutsch, Sep 30 2011
More generally the n-th k-gonal number is equal to n + (k-2)*A000217(n-1), n >= 1, k >= 3. In this case k = 5. - Omar E. Pol, Apr 06 2013
Note that both Euler's pentagonal theorem for the partition numbers and Euler's pentagonal theorem for the sum of divisors refer more exactly to the generalized pentagonal numbers, not this sequence. For more information see A001318, A175003, A238442. - Omar E. Pol, Mar 01 2014
The Fuss-Catalan numbers are Cat(d,k)= [1/(k*(d-1)+1)]*binomial(k*d,k) and enumerate the number of (d+1)-gon partitions of a (k*(d-1)+2)-gon (cf. Schuetz and Whieldon link). a(n)= Cat(n,3), so enumerates the number of (n+1)-gon partitions of a (3*(n-1)+2)-gon. Analogous sequences are A100157 (k=4) and A234043 (k=5). - Tom Copeland, Oct 05 2014
Binomial transform of (0, 1, 3, 0, 0, 0, ...) (A169585 with offset 1) and second partial sum of (0, 1, 3, 3, 3, ...). - Gary W. Adamson, Oct 05 2015
For n > 0, a(n) is the number of compositions of n+8 into n parts avoiding parts 2 and 3. - Milan Janjic, Jan 07 2016
a(n) is also the number of edges in the Mycielskian of the complete graph K[n]. Indeed, K[n] has n vertices and n(n-1)/2 edges. Then its Mycielskian has n + 3n(n-1)/2 = n(3n-1)/2. See p. 205 of the West reference. - Emeric Deutsch, Nov 04 2016
Sum of the numbers from n to 2n-1. - Wesley Ivan Hurt, Dec 03 2016
Also the number of maximal cliques in the n-Andrásfai graph. - Eric W. Weisstein, Dec 01 2017
Coefficients in the hypergeometric series identity 1 - 5*(x - 1)/(2*x + 1) + 12*(x - 1)*(x - 2)/((2*x + 1)*(2*x + 2)) - 22*(x - 1)*(x - 2)*(x - 3)/((2*x + 1)*(2*x + 2)*(2*x + 3)) + ... = 0, valid for Re(x) > 1. Cf. A002412 and A002418. Column 2 of A103450. - Peter Bala, Mar 14 2019
A generalization of the Comment dated Apr 10 2003 follows. (k-3)*A000292(n-2) plus the average of the first n (2k-1)-gonal numbers is the n-th k-gonal number. - Charlie Marion, Nov 01 2020
a(n+1) is the number of Dyck paths of size (3,3n+1); i.e., the number of NE lattice paths from (0,0) to (3,3n+1) which stay above the line connecting these points. - Harry Richman, Jul 13 2021
a(n) is the largest sum of n positive integers x_1, ..., x_n such that x_i | x_(i+1)+1 for each 1 <= i <= n, where x_(n+1) = x_1. - Yifan Xie, Feb 21 2025

Examples

			Illustration of initial terms:
.
.                                       o
.                                     o o
.                          o        o o o
.                        o o      o o o o
.                o     o o o    o o o o o
.              o o   o o o o    o o o o o
.        o   o o o   o o o o    o o o o o
.      o o   o o o   o o o o    o o o o o
.  o   o o   o o o   o o o o    o o o o o
.
.  1    5     12       22           35
- _Philippe Deléham_, Mar 30 2013
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pages 2 and 311.
  • Raymond Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; p. 129.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 38, 40.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 1.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 291.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 284.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 64.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 52-53, 129-130, 132.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 7-10.
  • André Weil, Number theory: an approach through history; from Hammurapi to Legendre, Birkhäuser, Boston, 1984; see p. 186.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 98-100.
  • Douglas B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001.

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
Cf. A001318 (generalized pentagonal numbers), A049452, A033570, A010815, A034856, A051340, A004736, A033568, A049453, A002411 (partial sums), A033579.
See A220083 for a list of numbers of the form n*P(s,n)-(n-1)*P(s,n-1), where P(s,n) is the n-th polygonal number with s sides.
Cf. A240137: sum of n consecutive cubes starting from n^3.
Cf. similar sequences listed in A022288.
Partial sums of A016777.

Programs

  • GAP
    List([0..50],n->n*(3*n-1)/2); # Muniru A Asiru, Mar 18 2019
    
  • Haskell
    a000326 n = n * (3 * n - 1) `div` 2  -- Reinhard Zumkeller, Jul 07 2012
    
  • Magma
    [n*(3*n-1)/2 : n in [0..100]]; // Wesley Ivan Hurt, Oct 15 2015
    
  • Maple
    A000326 := n->n*(3*n-1)/2: seq(A000326(n), n=0..100);
    A000326:=-(1+2*z)/(z-1)**3; # Simon Plouffe in his 1992 dissertation
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]-a[n-2]+3 od: seq(a[n], n=0..50); # Miklos Kristof, Zerinvary Lajos, Feb 18 2008
  • Mathematica
    Table[n (3 n - 1)/2, {n, 0, 60}] (* Stefan Steinerberger, Apr 01 2006 *)
    Array[# (3 # - 1)/2 &, 47, 0] (* Zerinvary Lajos, Jul 10 2009 *)
    LinearRecurrence[{3, -3, 1}, {0, 1, 5}, 61] (* Harvey P. Dale, Dec 27 2011 *)
    pentQ[n_] := IntegerQ[(1 + Sqrt[24 n + 1])/6]; pentQ[0] = True; Select[Range[0, 3200], pentQ@# &] (* Robert G. Wilson v, Mar 31 2014 *)
    Join[{0}, Accumulate[Range[1, 312, 3]]] (* Harvey P. Dale, Mar 26 2016 *)
    (* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[5], n], {n, 0, 46}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
    CoefficientList[Series[x (-1 - 2 x)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
    PolygonalNumber[5, Range[0, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
  • PARI
    a(n)=n*(3*n-1)/2
    
  • PARI
    vector(100, n, n--; binomial(3*n, 2)/3) \\ Altug Alkan, Oct 06 2015
    
  • PARI
    is_a000326(n) = my(s); n==0 || (issquare (24*n+1, &s) && s%6==5); \\ Hugo Pfoertner, Aug 03 2023
    
  • Python
    # Intended to compute the initial segment of the sequence, not isolated terms.
    def aList():
         x, y = 1, 1
         yield 0
         while True:
             yield x
             x, y = x + y + 3, y + 3
    A000326 = aList()
    print([next(A000326) for i in range(47)]) # Peter Luschny, Aug 04 2019

Formula

Product_{m > 0} (1 - q^m) = Sum_{k} (-1)^k*x^a(k). - Paul Barry, Jul 20 2003
G.f.: x*(1+2*x)/(1-x)^3.
E.g.f.: exp(x)*(x+3*x^2/2).
a(n) = n*(3*n-1)/2.
a(-n) = A005449(n).
a(n) = binomial(3*n, 2)/3. - Paul Barry, Jul 20 2003
a(n) = A000290(n) + A000217(n-1). - Lekraj Beedassy, Jun 07 2004
a(0) = 0, a(1) = 1; for n >= 2, a(n) = 2*a(n-1) - a(n-2) + 3. - Miklos Kristof, Mar 09 2005
a(n) = Sum_{k=1..n} (2*n - k). - Paul Barry, Aug 19 2005
a(n) = 3*A000217(n) - 2*n. - Lekraj Beedassy, Sep 26 2006
a(n) = A126890(n, n-1) for n > 0. - Reinhard Zumkeller, Dec 30 2006
a(n) = A049452(n) - A022266(n) = A033991(n) - A005476(n). - Zerinvary Lajos, Jun 12 2007
Equals A034856(n) + (n - 1)^2. Also equals A051340 * [1,2,3,...]. - Gary W. Adamson, Jul 27 2007
a(n) = binomial(n+1, 2) + 2*binomial(n, 2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0) = 0, a(1) = 1, a(2) = 5. - Jaume Oliver Lafont, Dec 02 2008
a(n) = a(n-1) + 3*n-2 with n > 0, a(0)=0. - Vincenzo Librandi, Nov 20 2010
a(n) = A000217(n) + 2*A000217(n-1). - Vincenzo Librandi, Nov 20 2010
a(n) = A014642(n)/8. - Omar E. Pol, Aug 18 2011
a(n) = A142150(n) + A191967(n). - Reinhard Zumkeller, Jul 07 2012
a(n) = (A000290(n) + A000384(n))/2 = (A000217(n) + A000566(n))/2 = A049450(n)/2. - Omar E. Pol, Jan 11 2013
a(n) = n*A000217(n) - (n-1)*A000217(n-1). - Bruno Berselli, Jan 18 2013
a(n) = A005449(n) - n. - Philippe Deléham, Mar 30 2013
From Oskar Wieland, Apr 10 2013: (Start)
a(n) = a(n+1) - A016777(n),
a(n) = a(n+2) - A016969(n),
a(n) = a(n+3) - A016777(n)*3 = a(n+3) - A017197(n),
a(n) = a(n+4) - A016969(n)*2 = a(n+4) - A017641(n),
a(n) = a(n+5) - A016777(n)*5,
a(n) = a(n+6) - A016969(n)*3,
a(n) = a(n+7) - A016777(n)*7,
a(n) = a(n+8) - A016969(n)*4,
a(n) = a(n+9) - A016777(n)*9. (End)
a(n) = A000217(2n-1) - A000217(n-1), for n > 0. - Ivan N. Ianakiev, Apr 17 2013
a(n) = A002411(n) - A002411(n-1). - J. M. Bergot, Jun 12 2013
Sum_{n>=1} a(n)/n! = 2.5*exp(1). - Richard R. Forberg, Jul 15 2013
a(n) = floor(n/(exp(2/(3*n)) - 1)), for n > 0. - Richard R. Forberg, Jul 27 2013
From Vladimir Shevelev, Jan 24 2014: (Start)
a(3*a(n) + 4*n + 1) = a(3*a(n) + 4*n) + a(3*n+1).
A generalization. Let {G_k(n)}_(n >= 0) be sequence of k-gonal numbers (k >= 3). Then the following identity holds: G_k((k-2)*G_k(n) + c(k-3)*n + 1) = G_k((k-2)*G_k(n) + c(k-3)*n) + G_k((k-2)*n + 1), where c = A000124. (End)
A242357(a(n)) = 1 for n > 0. - Reinhard Zumkeller, May 11 2014
Sum_{n>=1} 1/a(n)= (1/3)*(9*log(3) - sqrt(3)*Pi). - Enrique Pérez Herrero, Dec 02 2014. See the decimal expansion A244641.
a(n) = (A000292(6*n+k-1)-A000292(k))/(6*n-1)-A000217(3*n+k), for any k >= 0. - Manfred Arens, Apr 26 2015 [minor edits from Wolfdieter Lang, May 10 2015]
a(n) = A258708(3*n-1,1) for n > 0. - Reinhard Zumkeller, Jun 23 2015
a(n) = A007584(n) - A245301(n-1), for n > 0. - Manfred Arens, Jan 31 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(sqrt(3)*Pi - 6*log(2))/3 = 0.85501000622865446... - Ilya Gutkovskiy, Jul 28 2016
a(m+n) = a(m) + a(n) + 3*m*n. - Etienne Dupuis, Feb 16 2017
In general, let P(k,n) be the n-th k-gonal number. Then P(k,m+n) = P(k,m) + (k-2)mn + P(k,n). - Charlie Marion, Apr 16 2017
a(n) = A023855(2*n-1) - A023855(2*n-2). - Luc Rousseau, Feb 24 2018
a(n) = binomial(n,2) + n^2. - Pedro Caceres, Jul 28 2019
Product_{n>=2} (1 - 1/a(n)) = 3/5. - Amiram Eldar, Jan 21 2021
(n+1)*(a(n^2) + a(n^2+1) + ... + a(n^2+n)) = n*(a(n^2+n+1) + ... + a(n^2+2n)). - Charlie Marion, Apr 28 2024
a(n) = Sum_{k = 0..3*n} (-1)^(n+k+1) * binomial(k, 2)*binomial(3*n+k-1, 2*k). - Peter Bala, Nov 04 2024

Extensions

Incorrect example removed by Joerg Arndt, Mar 11 2010

A008585 a(n) = 3*n.

Original entry on oeis.org

0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156, 159, 162, 165, 168, 171, 174, 177
Offset: 0

Views

Author

Keywords

Comments

If n != 1 and n^2+2 is prime then n is a member of this sequence. - Cino Hilliard, Mar 19 2007
Multiples of 3. Positive members of this sequence are the third transversal numbers (or 3-transversal numbers): Numbers of the 3rd column of positive numbers in the square array of nonnegative and polygonal numbers A139600. Also, numbers of the 3rd column in the square array A057145. - Omar E. Pol, May 02 2008
Numbers n for which polynomial 27*x^6-2^n is factorizable. - Artur Jasinski, Nov 01 2008
1/7 in base-2 notation = 0.001001001... = 1/2^3 + 1/2^6 + 1/2^9 + ... - Gary W. Adamson, Jan 24 2009
A165330(a(n)) = 153 for n > 0; subsequence of A031179. - Reinhard Zumkeller, Sep 17 2009
A011655(a(n)) = 0. - Reinhard Zumkeller, Nov 30 2009
A215879(a(n)) = 0. - Reinhard Zumkeller, Dec 28 2012
Moser conjectured, and Newman proved, that the terms of this sequence are more likely to have an even number of 1s in binary than an odd number. The excess is an undulating multiple of n^(log 3/log 4). See also Coquet, who refines this result. - Charles R Greathouse IV, Jul 17 2013
Integer areas of medial triangles of integer-sided triangles.
Also integer subset of A188158(n)/4.
A medial triangle MNO is formed by joining the midpoints of the sides of a triangle ABC. The area of a medial triangle is A/4 where A is the area of the initial triangle ABC. - Michel Lagneau, Oct 28 2013
From Derek Orr, Nov 22 2014: (Start)
Let b(0) = 0, and b(n) = the number of distinct terms in the set of pairwise sums {b(0), ... b(n-1)} + {b(0), ... b(n-1)}. Then b(n+1) = a(n), for n > 0.
Example: b(1) = the number of distinct sums of {0} + {0}. The only possible sum is {0} so b(1) = 1. b(2) = the number of distinct sums of {0,1} + {0,1}. The possible sums are {0,1,2} so b(2) = 3. b(3) = the number of distinct sums of {0,1,3} + {0,1,3}. The possible sums are {0, 1, 2, 3, 4, 6} so b(3) = 6. This continues and one can see that b(n+1) = a(n). (End)
Number of partitions of 6n into exactly 2 parts. - Colin Barker, Mar 23 2015
Partial sums are in A045943. - Guenther Schrack, May 18 2017
Number of edges in a maximal planar graph with n+2 vertices, n > 0 (see A008486 comments). - Jonathan Sondow, Mar 03 2018
Also numbers such that when the leftmost digit is moved to the unit's place the result is divisible by 3. - Stefano Spezia, Jul 08 2025

Examples

			G.f.: 3*x + 6*x^2 + 9*x^3 + 12*x^4 + 15*x^5 + 18*x^6 + 21*x^7 + ...
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.

Crossrefs

Row / column 3 of A004247 and of A325820.
Cf. A016957, A057145, A139600, A139606, A001651 (complement), A032031 (partial products), A190944 (binary), A061819 (base 4).

Programs

Formula

G.f.: 3*x/(1-x)^2. - R. J. Mathar, Oct 23 2008
a(n) = A008486(n), n > 0. - R. J. Mathar, Oct 28 2008
G.f.: A(x) - 1, where A(x) is the g.f. of A008486. - Gennady Eremin, Feb 20 2021
a(n) = Sum_{k=0..inf} A030308(n,k)*A007283(k). - Philippe Deléham, Oct 17 2011
E.g.f.: 3*x*exp(x). - Ilya Gutkovskiy, May 18 2016
From Guenther Schrack, May 18 2017: (Start)
a(3*k) = a(a(k)) = A008591(n).
a(3*k+1) = a(a(k) + 1) = a(A016777(n)) = A017197(n).
a(3*k+2) = a(a(k) + 2) = a(A016789(n)) = A017233(n). (End)

Extensions

Partially edited by Joerg Arndt, Mar 11 2010

A003215 Hex (or centered hexagonal) numbers: 3*n*(n+1)+1 (crystal ball sequence for hexagonal lattice).

Original entry on oeis.org

1, 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397, 469, 547, 631, 721, 817, 919, 1027, 1141, 1261, 1387, 1519, 1657, 1801, 1951, 2107, 2269, 2437, 2611, 2791, 2977, 3169, 3367, 3571, 3781, 3997, 4219, 4447, 4681, 4921, 5167, 5419, 5677, 5941, 6211, 6487, 6769
Offset: 0

Views

Author

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
Crystal ball sequence for A_2 lattice. - Michael Somos, Jun 03 2012
Sixth spoke of hexagonal spiral (cf. A056105-A056109).
Number of ordered integer triples (a,b,c), -n <= a,b,c <= n, such that a+b+c=0. - Benoit Cloitre, Jun 14 2003
Also the number of partitions of 6n into at most 3 parts, A001399(6n). - R. K. Guy, Oct 20 2003
Also, a(n) is the number of partitions of 6(n+1) into exactly 3 distinct parts. - William J. Keith, Jul 01 2004
Number of dots in a centered hexagonal figure with n+1 dots on each side.
Values of second Bessel polynomial y_2(n) (see A001498).
First differences of cubes (A000578). - Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004
Final digits of Hex numbers (hex(n) mod 10) are periodic with palindromic period of length 5 {1, 7, 9, 7, 1}. Last two digits of Hex numbers (hex(n) mod 100) are periodic with palindromic period of length 100. - Alexander Adamchuk, Aug 11 2006
All divisors of a(n) are congruent to 1, modulo 6. Proof: If p is an odd prime different from 3 then 3n^2 + 3n + 1 = 0 (mod p) implies 9(2n + 1)^2 = -3 (mod p), whence p = 1 (mod 6). - Nick Hobson, Nov 13 2006
For n>=1, a(n) is the side of Outer Napoleon Triangle whose reference triangle is a right triangle with legs (3a(n))^(1/2) and 3n(a(n))^(1/2). - Tom Schicker (tschicke(AT)email.smith.edu), Apr 25 2007
Number of triples (a,b,c) where 0<=(a,b)<=n and c=n (at least once the term n). E.g., for n = 1: (0,0,1), (0,1,0), (1,0,0), (0,1,1), (1,0,1), (1,1,0), (1,1,1), so a(1)=7. - Philippe Lallouet (philip.lallouet(AT)wanadoo.fr), Aug 20 2007
Equals the triangular numbers convolved with [1, 4, 1, 0, 0, 0, ...]. - Gary W. Adamson and Alexander R. Povolotsky, May 29 2009
From Terry Stickels, Dec 07 2009: (Start)
Also the maximum number of viewable cubes from any one static point while viewing a cube stack of identical cubes of varying magnitude.
For example, viewing a 2 X 2 X 2 stack will yield 7 maximum viewable cubes.
If the stack is 3 X 3 X 3, the maximum number of viewable cubes from any one static position is 19, and so on.
The number of cubes in the stack must always be the same number for width, length, height (at true regular cubic stack) and the maximum number of visible cubes can always be found by taking any cubic number and subtracting the number of the cube that is one less.
Examples: 125 - 64 = 61, 64 - 27 = 37, 27 - 8 = 19. (End)
The sequence of digital roots of the a(n) is period 3: repeat [1,7,1]. - Ant King, Jun 17 2012
The average of the first n (n>0) centered hexagonal numbers is the n-th square. - Philippe Deléham, Feb 04 2013
A002024 is the following array A read along antidiagonals:
1, 2, 3, 4, 5, 6, ...
2, 3, 4, 5, 6, 7, ...
3, 4, 5, 6, 7, 8, ...
4, 5, 6, 7, 8, 9, ...
5, 6, 7, 8, 9, 10, ...
6, 7, 8, 9, 10, 11, ...
and a(n) is the hook sum Sum_{k=0..n} A(n,k) + Sum_{r=0..n-1} A(r,n). - R. J. Mathar, Jun 30 2013
a(n) is the sum of the terms in the n+1 X n+1 matrices minus those in n X n matrices in an array formed by considering A158405 an array (the beginning terms in each row are 1,3,5,7,9,11,...). - J. M. Bergot, Jul 05 2013
The formula also equals the product of the three distinct combinations of two consecutive numbers: n^2, (n+1)^2, and n*(n+1). - J. M. Bergot, Mar 28 2014
The sides of any triangle ABC are divided into 2n + 1 equal segments by 2n points: A_1, A_2, ..., A_2n in side a, and also on the sides b and c cyclically. If A'B'C' is the triangle delimited by AA_n, BB_n and CC_n cevians, we have (ABC)/(A'B'C') = a(n) (see Java applet link). - Ignacio Larrosa Cañestro, Jan 02 2015
a(n) is the maximal number of parts into which (n+1) triangles can intersect one another. - Ivan N. Ianakiev, Feb 18 2015
((2^m-1)n)^t mod a(n) = ((2^m-1)(n+1))^t mod a(n) = ((2^m-1)(2n+1))^t mod a(n), where m any positive integer, and t = 0(mod 6). - Alzhekeyev Ascar M, Oct 07 2016
((2^m-1)n)^t mod a(n) = ((2^m-1)(n+1))^t mod a(n) = a(n) - (((2^m-1)(2n+1))^t mod a(n)), where m any positive integer, and t = 3(mod 6). - Alzhekeyev Ascar M, Oct 07 2016
(3n+1)^(a(n)-1) mod a(n) = (3n+2)^(a(n)-1) mod a(n) = 1. If a(n) not prime, then always strong pseudoprime. - Alzhekeyev Ascar M, Oct 07 2016
Every positive integer is the sum of 8 hex numbers (zero included), at most 3 of which are greater than 1. - Mauro Fiorentini, Jan 01 2018
Area enclosed by the segment of Archimedean spiral between n*Pi/2 and (n+1)*Pi/2 in Pi^3/48 units. - Carmine Suriano, Apr 10 2018
This sequence contains all numbers k such that 12*k - 3 is a square. - Klaus Purath, Oct 19 2021
The continued fraction expansion of sqrt(3*a(n)) is [3n+1; {1, 1, 2n, 1, 1, 6n+2}]. For n = 0, this collapses to [1; {1, 2}]. - Magus K. Chu, Sep 12 2022

Examples

			G.f. = 1 + 7*x + 19*x^2 + 37*x^3 + 61*x^4 + 91*x^5 + 127*x^6 + 169*x^7 + 217*x^8 + ...
From _Omar E. Pol_, Aug 21 2011: (Start)
Illustration of initial terms:
.
.                                 o o o o
.                   o o o        o o o o o
.         o o      o o o o      o o o o o o
.   o    o o o    o o o o o    o o o o o o o
.         o o      o o o o      o o o o o o
.                   o o o        o o o o o
.                                 o o o o
.
.   1      7          19             37
.
(End)
From _Klaus Purath_, Dec 03 2021: (Start)
(1) a(19) is not a prime number, because besides a(19) = a(9) + P(29), a(19) = a(15) + P(20) = a(2) + P(33) is also true.
(2) a(25) is prime, because except for a(25) = a(12) + P(38) there is no other equation of this pattern. (End)
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 81.
  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 18.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A080853, and column k=2 of A047969.
See also A220083 for a list of numbers of the form n*P(s,n)-(n-1)*P(s,n-1), where P(s,n) is the n-th polygonal number with s sides.
Cf. A287326(A000124(n), 1).
Cf. A008292.
Cf. A154105.

Programs

Formula

a(n) = 3*n*(n+1) + 1, n >= 0 (see the name).
a(n) = (n+1)^3 - n^3 = a(-1-n).
G.f.: (1 + 4*x + x^2) / (1 - x)^3. - Simon Plouffe in his 1992 dissertation
a(n) = 6*A000217(n) + 1.
a(n) = a(n-1) + 6*n = 2a(n-1) - a(n-2) + 6 = 3*a(n-1) - 3*a(n-2) + a(n-3) = A056105(n) + 5n = A056106(n) + 4*n = A056107(n) + 3*n = A056108(n) + 2*n = A056108(n) + n.
n-th partial arithmetic mean is n^2. - Amarnath Murthy, May 27 2003
a(n) = 1 + Sum_{j=0..n} (6*j). E.g., a(2)=19 because 1+ 6*0 + 6*1 + 6*2 = 19. - Xavier Acloque, Oct 06 2003
The sum of the first n hexagonal numbers is n^3. That is, Sum_{n>=1} (3*n*(n-1) + 1) = n^3. - Edward Weed (eweed(AT)gdrs.com), Oct 23 2003
a(n) = right term in M^n * [1 1 1], where M = the 3 X 3 matrix [1 0 0 / 2 1 0 / 3 3 1]. M^n * [1 1 1] = [1 2n+1 a(n)]. E.g., a(4) = 61, right term in M^4 * [1 1 1], since M^4 * [1 1 1] = [1 9 61] = [1 2n+1 a(4)]. - Gary W. Adamson, Dec 22 2004
Row sums of triangle A130298. - Gary W. Adamson, Jun 07 2007
a(n) = 3*n^2 + 3*n + 1. Proof: 1) If n occurs once, it may be in 3 positions; for the two other ones, n terms are independently possible, then we have 3*n^2 different triples. 2) If the term n occurs twice, the third one may be placed in 3 positions and have n possible values, then we have 3*n more different triples. 3) The term n may occurs 3 times in one way only that gives the formula. - Philippe Lallouet (philip.lallouet(AT)wanadoo.fr), Aug 20 2007
Binomial transform of [1, 6, 6, 0, 0, 0, ...]; Narayana transform (A001263) of [1, 6, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n) = (n-1)*A000166(n) + (n-2)*A000166(n-1) = (n-1)floor(n!*e^(-1)+1) + (n-2)*floor((n-1)!*e^(-1)+1) (with offset 0). - Gary Detlefs, Dec 06 2009
a(n) = A028896(n) + 1. - Omar E. Pol, Oct 03 2011
a(n) = integral( (sin((n+1/2)x)/sin(x/2))^3, x=0..Pi)/Pi. - Yalcin Aktar, Dec 03 2011
Sum_{n>=0} 1/a(n) = Pi/sqrt(3)*tanh(Pi/(2*sqrt(3))) = 1.305284153013581... - Ant King, Jun 17 2012
a(n) = A000290(n) + A000217(2n+1). - Ivan N. Ianakiev, Sep 24 2013
a(n) = A002378(n+1) + A056220(n) = A005408(n) + 2*A005449(n) = 6*A000217(n) + 1. - Ivan N. Ianakiev, Sep 26 2013
a(n) = 6*A000124(n) - 5. - Ivan N. Ianakiev, Oct 13 2013
a(n) = A239426(n+1) / A239449(n+1) = A215630(2*n+1,n+1). - Reinhard Zumkeller, Mar 19 2014
a(n) = A243201(n) / A002061(n + 1). - Mathew Englander, Jun 03 2014
a(n) = A101321(6,n). - R. J. Mathar, Jul 28 2016
E.g.f.: (1 + 6*x + 3*x^2)*exp(x). - Ilya Gutkovskiy, Jul 28 2016
a(n) = (A001844(n) + A016754(n))/2. - Bruce J. Nicholson, Aug 06 2017
a(n) = A045943(2n+1). - Miquel Cerda, Jan 22 2018
a(n) = 3*Integral_{x=n..n+1} x^2 dx. - Carmine Suriano, Apr 10 2018
a(n) = A287326(A000124(n), 1). - Kolosov Petro, Oct 22 2018
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=0} a(n)/n! = 10*e.
Sum_{n>=0} (-1)^(n+1)*a(n)/n! = 2/e. (End)
G.f.: polylog(-3, x)*(1-x)/x. See the Simon Plouffe formula above, and the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 08 2021
a(n) = T(n-1)^2 - 2*T(n)^2 + T(n+1)^2, n >= 1, T = triangular number A000217. - Klaus Purath, Oct 11 2021
a(n) = 1 + 2*Sum_{j=n..2n} j. - Klaus Purath, Oct 19 2021
a(n) = A069099(n+1) - A000217(n). - Klaus Purath, Nov 03 2021
From Leo Tavares, Dec 03 2021: (Start)
a(n) = A005448(n) + A140091(n);
a(n) = A001844(n) + A002378(n);
a(n) = A005891(n) + A000217(n);
a(n) = A000290(n) + A000384(n+1);
a(n) = A060544(n-1) + 3*A000217(n);
a(n) = A060544(n-1) + A045943(n).
a(2*n+1) = A154105(n).
(End)

Extensions

Partially edited by Joerg Arndt, Mar 11 2010

A008586 Multiples of 4.

Original entry on oeis.org

0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 14 ).
A000466(n), a(n) and A053755(n) are Pythagorean triples. - Zak Seidov, Jan 16 2007
If X is an n-set and Y and Z disjoint 2-subsets of X then a(n-3) is equal to the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Aug 26 2007
Number of n-permutations (n>=1) of 5 objects u, v, z, x, y with repetition allowed, containing n-1 u's. Example: if n=1 then n-1 = zero (0) u, a(1)=4 because we have v, z, x, y. If n=2 then n-1 = one (1) u, a(2)=8 because we have vu, zu, xu, yu, uv, uz, ux, uy. A038231 formatted as a triangular array: diagonal: 4, 8, 12, 16, 20, 24, 28, 32, ... - Zerinvary Lajos, Aug 06 2008
For n > 0: numbers having more even than odd divisors: A048272(a(n)) < 0. - Reinhard Zumkeller, Jan 21 2012
A214546(a(n)) < 0 for n > 0. - Reinhard Zumkeller, Jul 20 2012
A090418(a(n)) = 0 for n > 0. - Reinhard Zumkeller, Aug 06 2012
Terms are the differences of consecutive centered square numbers (A001844). - Mihir Mathur, Apr 02 2013
a(n)*Pi = nonnegative zeros of the cycloid generated by a circle of radius 2 rolling along the positive x-axis from zero. - Wesley Ivan Hurt, Jul 01 2013
Apart from the initial term, number of vertices of minimal path on an n-dimensional cubic lattice (n>1) of side length 2, until a self-avoiding walk gets stuck. A004767 + 1. - Matthew Lehman, Dec 23 2013
The number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 2688. - Philippe A.J.G. Chevalier, Dec 29 2015
First differences of A001844. - Robert Price, May 13 2016
Numbers k such that Fibonacci(k) is a multiple of 3 (A033888). - Bruno Berselli, Oct 17 2017

Crossrefs

Number of orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A115067, A008585, A005843, A001477, A000217.

Programs

Formula

a(n) = A008574(n), n>0. - R. J. Mathar, Oct 28 2008
a(n) = Sum_{k>=0} A030308(n,k)*2^(k+2). - Philippe Deléham, Oct 17 2011
a(n+1) = A000290(n+2) - A000290(n). - Philippe Deléham, Mar 31 2013
G.f.: 4*x/(1-x)^2. - David Wilding, Jun 21 2014
E.g.f.: 4*x*exp(x). - Stefano Spezia, May 18 2021

A046092 4 times triangular numbers: a(n) = 2*n*(n+1).

Original entry on oeis.org

0, 4, 12, 24, 40, 60, 84, 112, 144, 180, 220, 264, 312, 364, 420, 480, 544, 612, 684, 760, 840, 924, 1012, 1104, 1200, 1300, 1404, 1512, 1624, 1740, 1860, 1984, 2112, 2244, 2380, 2520, 2664, 2812, 2964, 3120, 3280, 3444, 3612, 3784, 3960, 4140, 4324
Offset: 0

Views

Author

Keywords

Comments

Consider all Pythagorean triples (X,Y,Z=Y+1) ordered by increasing Z; sequence gives Y values. X values are 1, 3, 5, 7, 9, ... (A005408), Z values are A001844.
In the triple (X, Y, Z) we have X^2=Y+Z. Actually, the triple is given by {x, (x^2 -+ 1)/2}, where x runs over the odd numbers (A005408) and x^2 over the odd squares (A016754). - Lekraj Beedassy, Jun 11 2004
a(n) is the number of edges in n X n square grid with all horizontal and vertical segments filled in. - Asher Auel, Jan 12 2000 [Corrected by Felix Huber, Apr 09 2024]
a(n) is the only number satisfying an inequality related to zeta(2) and zeta(3): Sum_{i>a(n)+1} 1/i^2 < Sum_{i>n} 1/i^3 < Sum_{i>a(n)} 1/i^2. - Benoit Cloitre, Nov 02 2001
Number of right triangles made from vertices of a regular n-gon when n is even. - Sen-Peng Eu, Apr 05 2001
Number of ways to change two non-identical letters in the word aabbccdd..., where there are n type of letters. - Zerinvary Lajos, Feb 15 2005
a(n) is the number of (n-1)-dimensional sides of an (n+1)-dimensional hypercube (e.g., squares have 4 corners, cubes have 12 edges, etc.). - Freek van Walderveen (freek_is(AT)vanwal.nl), Nov 11 2005
From Nikolaos Diamantis (nikos7am(AT)yahoo.com), May 23 2006: (Start)
Consider a triangle, a pentagon, a heptagon, ..., a k-gon where k is odd. We label a triangle with n=1, a pentagon with n=2, ..., a k-gon with n = floor(k/2). Imagine a player standing at each vertex of the k-gon.
Initially there are 2 frisbees, one held by each of two neighboring players. Every time they throw the frisbee to one of their two nearest neighbors with equal probability. Then a(n) gives the average number of steps needed so that the frisbees meet.
I verified this by simulating the processes with a computer program. For example, a(2) = 12 because in a pentagon that's the expected number of trials we need to perform. That is an exercise in Concrete Mathematics and it can be done using generating functions. (End)
A diagonal of A059056. - Zerinvary Lajos, Jun 18 2007
If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n-1) is equal to the number of 2-subsets of X containing none of X_i, (i=1,...,n). - Milan Janjic, Jul 16 2007
X values of solutions to the equation 2*X^3 + X^2 = Y^2. To find Y values: b(n) = 2n(n+1)(2n+1). - Mohamed Bouhamida, Nov 06 2007
Number of (n+1)-permutations of 3 objects u,v,w, with repetition allowed, containing n-1 u's. Example: a(1)=4 because we have vv, vw, wv and ww; a(2)=12 because we can place u in each of the previous four 2-permutations either in front, or in the middle, or at the end. - Zerinvary Lajos, Dec 27 2007
Sequence found by reading the line from 0, in the direction 0, 4, ... and the same line from 0, in the direction 0, 12, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, May 03 2008
a(n) is also the least weight of self-conjugate partitions having n different even parts. - Augustine O. Munagi, Dec 18 2008
From Peter Luschny, Jul 12 2009: (Start)
The general formula for alternating sums of powers of even integers is in terms of the Swiss-Knife polynomials P(n,x) A153641 (P(n,1)-(-1)^k P(n,2k+1))/2. Here n=2, thus
a(k) = |(P(2,1) - (-1)^k*P(2,2k+1))/2|. (End)
The sum of squares of n+1 consecutive numbers between a(n)-n and a(n) inclusive equals the sum of squares of n consecutive numbers following a(n). For example, for n = 2, a(2) = 12, and the corresponding equation is 10^2 + 11^2 + 12^2 = 13^2 + 14^2. - Tanya Khovanova, Jul 20 2009
Number of roots in the root system of type D_{n+1} (for n>2). - Tom Edgar, Nov 05 2013
Draw n ellipses in the plane (n>0), any 2 meeting in 4 points; sequence gives number of intersections of these ellipses (cf. A051890, A001844); a(n) = A051890(n+1) - 2 = A001844(n) - 1. - Jaroslav Krizek, Dec 27 2013
a(n) appears also as the second member of the quartet [p0(n), a(n), p2(n), p3(n)] of the square of [n, n+1, n+2, n+3] in the Clifford algebra Cl_2 for n >= 0. p0(n) = -A147973(n+3), p2(n) = A054000(n+1) and p3(n) = A139570(n). See a comment on A147973, also with a reference. - Wolfdieter Lang, Oct 15 2014
a(n) appears also as the third and fourth member of the quartet [p0(n), p0(n), a(n), a(n)] of the square of [n, n, n+1, n+1] in the Clifford algebra Cl_2 for n >= 0. p0(n) = A001105(n). - Wolfdieter Lang, Oct 16 2014
Consider two equal rectangles composed of unit squares. Then surround the 1st rectangle with 1-unit-wide layers to build larger rectangles, and surround the 2nd rectangle just to hide the previous layers. If r(n) and h(n) are the number of unit squares needed for n layers in the 1st case and the 2nd case, then for all rectangles, we have a(n) = r(n) - h(n) for n>=1. - Michel Marcus, Sep 28 2015
When greater than 4, a(n) is the perimeter of a Pythagorean triangle with an even short leg 2*n. - Agola Kisira Odero, Apr 26 2016
Also the number of minimum connected dominating sets in the (n+1)-cocktail party graph. - Eric W. Weisstein, Jun 29 2017
a(n+1) is the harmonic mean of A000384(n+2) and A014105(n+1). - Bob Andriesse, Apr 27 2019
Consider a circular cake from which wedges of equal center angle c are cut out in clockwise succession and turned around so that the bottom comes to the top. This goes on until the cake shows its initial surface again. An interesting case occurs if 360°/c is not an integer. Then, with n = floor(360°/c), the number of wedges which have to be cut out and turned equals a(n). (For the number of cutting line segments see A005408.) - According to Peter Winkler's book "Mathematical Mind-Benders", which presents the problem and its solution (see Winkler, pp. 111, 115) the problem seems to be of French origin but little is known about its history. - Manfred Boergens, Apr 05 2022
a(n-3) is the maximum irregularity over all maximal 2-degenerate graphs with n vertices. The extremal graphs are 2-stars (K_2 joined to n-2 independent vertices). (The irregularity of a graph is the sum of the differences between the degrees over all edges of the graph.) - Allan Bickle, May 29 2023
Number of ways of placing a domino on a (n+1)X(n+1) board of squares. - R. J. Mathar, Apr 24 2024
The sequence terms are the exponents in the expansion of (1/(1 + x)) * Sum_{n >= 0} x^n * Product_{k = 1..n} (1 - x^(2*k-1))/(1 + x^(2*k+1)) = 1 - x^4 + x^12 - x^24 + x^40 - x^60 + - ... (Andrews and Berndt, Entry 9.3.3, p. 229). Cf. A153140. - Peter Bala, Feb 15 2025
Number of edges in an (n+1)-dimensional orthoplex. 2D orthoplexes (diamonds) have 4 edges, 3D orthoplexes (octahedrons) have 12 edges, 4D orthoplexes (16-cell) have 24 edges, and so on. - Aaron Franke, Mar 23 2025

Examples

			a(7)=112 because 112 = 2*7*(7+1).
The first few triples are (1,0,1), (3,4,5), (5,12,13), (7,24,25), ...
The first such partitions, corresponding to a(n)=1,2,3,4, are 2+2, 4+4+2+2, 6+6+4+4+2+2, 8+8+6+6+4+4+2+2. - _Augustine O. Munagi_, Dec 18 2008
		

References

  • George E. Andrews and Bruce C. Berndt, Ramanujan's Lost Notebook, Part I, Springer, 2005.
  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 3.
  • Albert H. Beiler, Recreations in the Theory of Numbers. New York: Dover, p. 125, 1964.
  • Ronald L. Graham, D. E. Knuth and Oren Patashnik, Concrete Mathematics, Reading, Massachusetts: Addison-Wesley, 1994.
  • Peter Winkler, Mathematical Mind-Benders, Wellesley, Massachusetts: A K Peters, 2007.

Crossrefs

Main diagonal of array in A001477.
Equals A033996/2. Cf. A001844. - Augustine O. Munagi, Dec 18 2008
Cf. A078371, A141530 (see Librandi's comment in A078371).
Cf. similar sequences listed in A299645.
Cf. A005408.
Cf. A016754.
Cf. A002378, A046092, A028896 (irregularities of maximal k-degenerate graphs).

Programs

Formula

a(n) = A100345(n+1, n-1) for n>0.
a(n) = 2*A002378(n) = 4*A000217(n). - Lekraj Beedassy, May 25 2004
a(n) = C(2n, 2) - n = 4*C(n, 2). - Zerinvary Lajos, Feb 15 2005
From Lekraj Beedassy, Jun 04 2006: (Start)
a(n) - a(n-1)=4*n.
Let k=a(n). Then a(n+1) = k + 2*(1 + sqrt(2k + 1)). (End)
Array read by rows: row n gives A033586(n), A085250(n+1). - Omar E. Pol, May 03 2008
O.g.f.:4*x/(1-x)^3; e.g.f.: exp(x)*(2*x^2+4*x). - Geoffrey Critzer, May 17 2009
From Stephen Crowley, Jul 26 2009: (Start)
a(n) = 1/int(-(x*n+x-1)*(step((-1+x*n)/n)-1)*n*step((x*n+x-1)/(n+1)),x=0..1) where step(x)=piecewise(x<0,0,0<=x,1) is the Heaviside step function.
Sum_{n>=1} 1/a(n) = 1/2. (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=4, a(2)=12. - Harvey P. Dale, Jul 25 2011
For n > 0, a(n) = 1/(Integral_{x=0..Pi/2} (sin(x))^(2*n-1)*(cos(x))^3). - Francesco Daddi, Aug 02 2011
a(n) = A001844(n) - 1. - Omar E. Pol, Oct 03 2011
(a(n) - A000217(k))^2 = A000217(2n-k)*A000217(2n+1+k) - (A002378(n) - A000217(k)), for all k. See also A001105. - Charlie Marion, May 09 2013
From Ivan N. Ianakiev, Aug 30 2013: (Start)
a(n)*(2m+1)^2 + a(m) = a(n*(2m+1)+m), for any nonnegative integers n and m.
t(k)*a(n) + t(k-1)*a(n+1) = a((n+1)*(t(k)-t(k-1)-1)), where k>=2, n>=1, t(k)=A000217(k). (End)
a(n) = A245300(n,n). - Reinhard Zumkeller, Jul 17 2014
2*a(n)+1 = A016754(n) = A005408(n)^2, the odd squares. - M. F. Hasler, Oct 02 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2) - 1/2 = A187832. - Ilya Gutkovskiy, Mar 16 2017
a(n) = lcm(2*n,2*n+2). - Enrique Navarrete, Aug 30 2017
a(n)*a(n+k) + k^2 = m^2 (a perfect square), n >= 1, k >= 0. - Ezhilarasu Velayutham, May 13 2019
From Amiram Eldar, Jan 29 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = cosh(Pi/2)/(Pi/2).
Product_{n>=1} (1 - 1/a(n)) = -2*cos(sqrt(3)*Pi/2)/Pi. (End)
a(n) = A016754(n) - A001844(n). - Leo Tavares, Sep 20 2022

A005448 Centered triangular numbers: a(n) = 3*n*(n-1)/2 + 1.

Original entry on oeis.org

1, 4, 10, 19, 31, 46, 64, 85, 109, 136, 166, 199, 235, 274, 316, 361, 409, 460, 514, 571, 631, 694, 760, 829, 901, 976, 1054, 1135, 1219, 1306, 1396, 1489, 1585, 1684, 1786, 1891, 1999, 2110, 2224, 2341, 2461, 2584, 2710, 2839, 2971, 3106, 3244, 3385, 3529
Offset: 1

Views

Author

N. J. A. Sloane, R. K. Guy, Dec 12 1974

Keywords

Comments

These are Hogben's central polygonal numbers
2
.P
3 n
Also the sum of three consecutive triangular numbers (A000217); i.e., a(4) = 19 = T4 + T3 + T2 = 10 + 6 + 3. - Robert G. Wilson v, Apr 27 2001
For k>2, Sum_{n=1..k} a(n) gives the sum pertaining to the magic square of order k. E.g., Sum_{n=1..5} a(n) = 1 + 4 + 10 + 19 + 31 = 65. In general, Sum_{n=1..k} a(n) = k*(k^2 + 1)/2. - Amarnath Murthy, Dec 22 2001
Binomial transform of (1,3,3,0,0,0,...). - Paul Barry, Jul 01 2003
a(n) is the difference of two tetrahedral (or pyramidal) numbers: C(n+3,3) = (n+1)(n+2)(n+3)/6. a(n) = A000292(n) - A000292(n-3) = (n+1)(n+2)(n+3)/6 - (n-2)(n-1)(n)/6. - Alexander Adamchuk, May 20 2006
Partial sums are A006003(n) = n(n^2+1)/2. Finite differences are a(n+1) - a(n) = A008585(n) = 3n. - Alexander Adamchuk, Jun 03 2006
If X is an n-set and Y a fixed 3-subset of X then a(n-2) is equal to the number of 3-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
Equals (1, 2, 3, ...) convolved with (1, 2, 3, 3, 3, ...). a(4) = 19 = (1, 2, 3, 4) dot (3, 3, 2, 1) = (3 + 6 + 6 + 4). - Gary W. Adamson, May 01 2009
Equals the triangular numbers convolved with [1, 1, 1, 0, 0, 0, ...]. - Gary W. Adamson and Alexander R. Povolotsky, May 29 2009
a(n) is the number of triples (w,x,y) having all terms in {0,...,n} and min(w+x,x+y,y+w) = max(w,x,y). - Clark Kimberling, Jun 14 2012
a(n) = number of atoms at graph distance <= n from an atom in the graphite or graphene network (cf. A008486). - N. J. A. Sloane, Jan 06 2013
In 1826, Shiraishi gave a solution to the Diophantine equation a^3 + b^3 + c^3 = d^3 with b = a(n) for n > 1; see A226903. - Jonathan Sondow, Jun 22 2013
For n > 1, a(n) is the remainder of n^2 * (n-1)^2 mod (n^2 + (n-1)^2). - J. M. Bergot, Jun 27 2013
The equation A000578(x) - A000578(x-1) = A000217(y) - A000217(y-2) is satisfied by y=a(x). - Bruno Berselli, Feb 19 2014
A242357(a(n)) = n. - Reinhard Zumkeller, May 11 2014
A255437(a(n)) = 1. - Reinhard Zumkeller, Mar 23 2015
The first differences give A008486. a(n) seems to give the total number of triangles in the n-th generation of the six patterns of triangle expansion shown in the link. - Kival Ngaokrajang, Sep 12 2015
Number of binary shuffle squares of length 2n which contains exactly two 1's. - Bartlomiej Pawlik, Sep 07 2023
The digital root has period 3 (1, 4, 1) (A146325), the same digital root as the centered 12-gonal numbers, or centered dodecagonal numbers A003154(n). - Peter M. Chema, Dec 20 2023

Examples

			From _Seiichi Manyama_, Aug 12 2017: (Start)
a(1) = 1:
      *
     / \
    /   \
   /     \
  *-------*
.................................................
a(2) = 4:
            *
           / \
          /   \
         /     \
        *---*---*
           / \
      *   /   \   *
     / \ /     \ / \
    /   *-------*   \
   /     \     /     \
  *-------*   *-------*
.................................................
a(3) = 10:
                  *
                 / \
                /   \
               /     \
              *---*---*
                 / \
            *   /   \   *
           / \ /     \ / \
          /   *---*---*   \
         /     \ / \ /     \
        *---*---*   *---*---*
           / \ /     \ / \
      *   /   *---*---*   \   *
     / \ /     \ / \ /     \ / \
    /   *-------*   *-------*   \
   /     \     /     \     /     \
  *-------*   *-------*   *-------*
.................................................
a(4) = 19:
                        *
                       / \
                      /   \
                     /     \
                    *---*---*
                       / \
                  *   /   \   *
                 / \ /     \ / \
                /   *---*---*   \
               /     \ / \ /     \
              *---*---*   *---*---*
                 / \ /     \ / \
            *   /   \---*---*   \   *
           / \ /     \ / \ /     \ / \
          /   *---*---*   *---*---*   \
         /     \ / \ /     \ / \ /     \
        *---*---*   *---*---*   *---*---*
           / \ /     \ / \ /     \ / \
      *   /   *---*---*   *---*---*   \   *
     / \ /     \ / \ /     \ / \ /     \ / \
    /   *-------*   *-------*   *-------*   \
   /     \     /     \     /     \     /     \
  *-------*   *-------*   *-------*   *-------*
(End)
		

References

  • R. Reed, The Lemming Simulation Problem, Mathematics in School, 3 (#6, Nov. 1974), front cover and pp. 5-6.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a005448 n = 3 * n * (n - 1) `div` 2 + 1
    a005448_list = 1 : zipWith (+) a005448_list [3, 6 ..]
    -- Reinhard Zumkeller, Jun 20 2013
    
  • Magma
    I:=[1,4,10]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..60]]; // Vincenzo Librandi, Sep 13 2015
  • Maple
    A005448 := n->(3*(n-1)^2+3*(n-1)+2)/2: seq(A005448(n), n=1..100);
    A005448 := -(1+z+z**2)/(z-1)^3; # Simon Plouffe in his 1992 dissertation for offset 0
  • Mathematica
    FoldList[#1 + #2 &, 1, 3 Range@ 50] (* Robert G. Wilson v, Feb 02 2011 *)
    Join[{1,4},Total/@Partition[Accumulate[Range[50]],3,1]] (* Harvey P. Dale, Aug 17 2012 *)
    LinearRecurrence[{3, -3, 1}, {1, 4, 10}, 50] (* Vincenzo Librandi, Sep 13 2015 *)
    Table[ j! Coefficient[Series[Exp[x]*(1 + 3 x^2/2)-1, {x, 0, 20}], x, j], {j, 0, 20}] (* Nikolaos Pantelidis, Feb 07 2023 *)
    3#+1&/@Accumulate[Range[0,50]] (* Harvey P. Dale, Nov 20 2024 *)
  • PARI
    {a(n)=3*(n^2-n)/2+1} /* Michael Somos, Sep 23 2006 */
    
  • PARI
    isok(n) = my(k=(2*n-2)/3, m); (n==1) || ((denominator(k)==1) && (m=sqrtint(k)) && (m*(m+1)==k)); \\ Michel Marcus, May 20 2020
    

Formula

Expansion of x*(1-x^3)/(1-x)^4.
a(n) = C(n+3, 3)-C(n, 3) = C(n, 0)+3*C(n, 1)+3*C(n, 2). - Paul Barry, Jul 01 2003
a(n) = 1 + Sum_{j=0..n-1} (3*j). - Xavier Acloque, Oct 25 2003
a(n) = A000217(n) + A000290(n-1) = (3*A016754(n) + 5)/8. - Lekraj Beedassy, Nov 05 2005
Euler transform of length 3 sequence [4, 0, -1]. - Michael Somos, Sep 23 2006
a(1-n) = a(n). - Michael Somos, Sep 23 2006
a(n) = binomial(n+1,n-1) + binomial(n,n-2) + binomial(n-1,n-3). - Zerinvary Lajos, Sep 03 2006
Row sums of triangle A134482. - Gary W. Adamson, Oct 27 2007
Narayana transform (A001263) * [1, 3, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(1)=1, a(2)=4, a(3)=10. - Jaume Oliver Lafont, Dec 02 2008
a(n) = A000217(n-1)*3 + 1 = A045943(n-1) + 1. - Omar E. Pol, Dec 27 2008
a(n) = a(n-1) + 3*n-3. - Vincenzo Librandi, Nov 18 2010
Sum_{n>=1} 1/a(n) = A306324. - Ant King, Jun 12 2012
a(n) = 2*a(n-1) - a(n-2) + 3. - Ant King, Jun 12 2012
a(n) = A101321(3,n-1). - R. J. Mathar, Jul 28 2016
E.g.f.: -1 + (2 + 3*x^2)*exp(x)/2. - Ilya Gutkovskiy, Jul 28 2016
a(n) = A002061(n) + A000217(n-1). - Bruce J. Nicholson, Apr 20 2017
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=1} a(n)/n! = 5*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 5/(2*e) - 1. (End)
a(n) = A000326(n) - n + 1. - Charlie Marion, Nov 21 2020

A005449 Second pentagonal numbers: a(n) = n*(3*n + 1)/2.

Original entry on oeis.org

0, 2, 7, 15, 26, 40, 57, 77, 100, 126, 155, 187, 222, 260, 301, 345, 392, 442, 495, 551, 610, 672, 737, 805, 876, 950, 1027, 1107, 1190, 1276, 1365, 1457, 1552, 1650, 1751, 1855, 1962, 2072, 2185, 2301, 2420, 2542, 2667, 2795, 2926, 3060, 3197, 3337, 3480
Offset: 0

Views

Author

Keywords

Comments

Number of edges in the join of the complete graph and the cycle graph, both of order n, K_n * C_n. - Roberto E. Martinez II, Jan 07 2002
Also number of cards to build an n-tier house of cards. - Martin Wohlgemuth, Aug 11 2002
The modular form Delta(q) = q*Product_{n>=1} (1-q^n)^24 = q*(1 + Sum_{n>=1} (-1)^n*(q^(n*(3*n-1)/2)+q^(n*(3*n+1)/2)))^24 = q*(1 + Sum_{n>=1} A033999(n)*(q^A000326(n)+q^a(n)))^24. - Jonathan Vos Post, Mar 15 2006
Row sums of triangle A134403.
Bisection of A001318. - Omar E. Pol, Aug 22 2011
Sequence found by reading the line from 0 in the direction 0, 7, ... and the line from 2 in the direction 2, 15, ... in the square spiral whose vertices are the generalized pentagonal numbers, A001318. - Omar E. Pol, Sep 08 2011
A general formula for the n-th second k-gonal number is given by T(n, k) = n*((k-2)*n+k-4)/2, n>=0, k>=5. - Omar E. Pol, Aug 04 2012
Partial sums give A006002. - Denis Borris, Jan 07 2013
A002260 is the following array A read by antidiagonals:
0, 1, 2, 3, 4, 5, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 2, 3, 4, 5, ...
and a(n) is the hook sum: Sum_{k=0..n} A(n,k) + Sum_{r=0..n-1} A(r,n). - R. J. Mathar, Jun 30 2013
From Klaus Purath, May 13 2021: (Start)
This sequence and A000326 provide all integers m such that 24*m + 1 is a square. The union of the two sequences is A001318.
If A is a sequence satisfying the recurrence t(n) = 3*t(n-1) - 2*t(n-2) with the initial values either A(0) = 1, A(1) = n + 2 or A(0) = -1, A(1) = n - 1, then a(n) = (A(i)^2 - A(i-1)*A(i+1))/2^i + n^2 for i>0. (End)
a(n+1) is the number of Dyck paths of size (3,3n+2), i.e., the number of NE lattice paths from (0,0) to (3,3n+2) which stay above the line connecting these points. - Harry Richman, Jul 13 2021
Binomial transform of [0, 2, 3, 0, 0, 0, ...], being a(n) = 2*binomial(n,1) + 3*binomial(n,2). a(3) = 15 = [0, 2, 3, 0] dot [1, 3, 3, 1] = [0 + 6 + 9 + 0]. - Gary W. Adamson, Dec 17 2022
a(n) is the sum of longest side length of all nondegenerate integer-sided triangles with shortest side length n and middle side length (n + 1), n > 0. - Torlach Rush, Feb 04 2024

Examples

			From _Omar E. Pol_, Aug 22 2011: (Start)
Illustration of initial terms:
                                               O
                                             O O
                                 O         O O O
                               O O       O O O O
                     O       O O O     O O O O O
                   O O     O O O O     O O O O O
           O     O O O     O O O O     O O O O O
         O O     O O O     O O O O     O O O O O
    O    O O     O O O     O O O O     O O O O O
    O    O O     O O O     O O O O     O O O O O
    -    ---     -----     -------     ---------
    2     7        15         26           40
(End)
		

References

  • Henri Cohen, A Course in Computational Algebraic Number Theory, vol. 138 of Graduate Texts in Mathematics, Springer-Verlag, 2000.

Crossrefs

Cf. A016789 (first differences), A006002 (partial sums).
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, this sequence, A045943, A115067, A140090, A140091, A059845, A140672-A140675, A151542.
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488 (this sequence is the case k=3).
Cf. numbers of the form n*((2*k+1)*n+1)/2 listed in A022289 (this sequence is the case k=1).

Programs

Formula

a(n) = A110449(n, 1) for n>0.
G.f.: x*(2+x)/(1-x)^3. E.g.f.: exp(x)*(2*x + 3*x^2/2). a(n) = n*(3*n + 1)/2. a(-n) = A000326(n). - Michael Somos, Jul 18 2003
a(n) = A001844(n) - A000217(n+1) = A101164(n+2,2) for n>0. - Reinhard Zumkeller, Dec 03 2004
a(n) = Sum_{j=1..n} n+j. - Zerinvary Lajos, Sep 12 2006
a(n) = A126890(n,n). - Reinhard Zumkeller, Dec 30 2006
a(n) = 2*C(3*n,4)/C(3*n,2), n>=1. - Zerinvary Lajos, Jan 02 2007
a(n) = A000217(n) + A000290(n). - Zak Seidov, Apr 06 2008
a(n) = a(n-1) + 3*n - 1 for n>0, a(0)=0. - Vincenzo Librandi, Nov 18 2010
a(n) = A129267(n+5,n). - Philippe Deléham, Dec 21 2011
a(n) = 2*A000217(n) + A000217(n-1). - Philippe Deléham, Mar 25 2013
a(n) = A130518(3*n+1). - Philippe Deléham, Mar 26 2013
a(n) = (12/(n+2)!)*Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*j^(n+2). - Vladimir Kruchinin, Jun 04 2013
a(n) = floor(n/(1-exp(-2/(3*n)))) for n>0. - Richard R. Forberg, Jun 22 2013
a(n) = Sum_{i=1..n} (3*i - 1) for n >= 1. - Wesley Ivan Hurt, Oct 11 2013 [Corrected by Rémi Guillaume, Oct 24 2024]
a(n) = (A000292(6*n+k+1)-A000292(k))/(6*n+1) - A000217(3*n+k+1), for any k >= 0. - Manfred Arens, Apr 26 2015
Sum_{n>=1} 1/a(n) = 6 - Pi/sqrt(3) - 3*log(3) = 0.89036376976145307522... . - Vaclav Kotesovec, Apr 27 2016
a(n) = A000217(2*n) - A000217(n). - Bruno Berselli, Sep 21 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/sqrt(3) + 4*log(2) - 6. - Amiram Eldar, Jan 18 2021
From Klaus Purath, May 13 2021: (Start)
Partial sums of A016789 for n > 0.
a(n) = 3*n^2 - A000326(n).
a(n) = A000326(n) + n.
a(n) = A002378(n) + A000217(n-1) for n >= 1. [Corrected by Rémi Guillaume, Aug 14 2024] (End)
From Klaus Purath, Jul 14 2021: (Start)
b^2 = 24*a(n) + 1 we get by b^2 = (a(n+1) - a(n-1))^2 = (a(2*n)/n)^2.
a(2*n) = n*(a(n+1) - a(n-1)), n > 0.
a(2*n+1) = n*(a(n+1) - a(n)). (End)
A generalization of Lajos' formula, dated Sep 12 2006, follows. Let SP(k,n) = the n-th second k-gonal number. Then SP(2k+1,n) = Sum_{j=1..n} (k-1)*n+j+k-2. - Charlie Marion, Jul 13 2024
a(n) = Sum_{k = 0..3*n} (-1)^(n+k+1) * binomial(k, 2) * binomial(3*n+k, 2*k). - Peter Bala, Nov 03 2024
For integer m, (6*m + 1)^2*a(n) + a(m) = a((6*m+1)*n + m). - Peter Bala, Jan 09 2025

A033428 a(n) = 3*n^2.

Original entry on oeis.org

0, 3, 12, 27, 48, 75, 108, 147, 192, 243, 300, 363, 432, 507, 588, 675, 768, 867, 972, 1083, 1200, 1323, 1452, 1587, 1728, 1875, 2028, 2187, 2352, 2523, 2700, 2883, 3072, 3267, 3468, 3675, 3888, 4107, 4332, 4563, 4800, 5043, 5292, 5547, 5808, 6075, 6348
Offset: 0

Views

Author

Keywords

Comments

The number of edges of a complete tripartite graph of order 3n, K_n,n,n. - Roberto E. Martinez II, Oct 18 2001
From Floor van Lamoen, Jul 21 2001: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0; then a(n) is the sequence found by reading the line from 0 in the direction 0,3,.... The spiral begins:
.
33--32--31--30
/ \
34 16--15--14 29
/ / \ \
35 17 5---4 13 28
/ / / \ \ \
36 18 6 0---3--12--27--48-->
/ / / / / / / /
37 19 7 1---2 11 26 47
\ \ \ / / /
38 20 8---9--10 25 46
\ \ / /
39 21--22--23--24 45
\ /
40--41--42--43--44
(End)
Number of edges of the complete bipartite graph of order 4n, K_n,3n. - Roberto E. Martinez II, Jan 07 2002
Also the number of partitions of 6n + 3 into at most 3 parts. - R. K. Guy, Oct 23 2003
Also the number of partitions of 6n into exactly 3 parts. - Colin Barker, Mar 23 2015
Numbers n such that the imaginary quadratic field Q[sqrt(-n)] has six units. - Marc LeBrun, Apr 12 2006
The denominators of Hoehn's sequence (recalled by G. L. Honaker, Jr.) and the numerators of that sequence reversed. The sequence is 1/3, (1+3)/(5+7), (1+3+5)/(7+9+11), (1+3+5+7)/(9+11+13+15), ...; reduced to 1/3, 4/12, 9/27, 16/48, ... . For the reversal, the reduction is 3/1, 12/4, 27/9, 48/16, ... . - Enoch Haga, Oct 05 2007
Right edge of tables in A200737 and A200741: A200737(n, A000292(n)) = A200741(n, A100440(n)) = a(n). - Reinhard Zumkeller, Nov 21 2011
The Wiener index of the crown graph G(n) (n>=3). The crown graph G(n) is the graph with vertex set {x(1), x(2), ..., x(n), y(1), y(2), ..., y(n)} and edge set {(x(i), y(j)): 1<=i, j<=n, i/=j} (= the complete bipartite graph K(n,n) with horizontal edges removed). Example: a(3)=27 because G(3) is the cycle C(6) and 6*1 + 6*2 + 3*3 = 27. The Hosoya-Wiener polynomial of G(n) is n(n-1)(t+t^2)+nt^3. - Emeric Deutsch, Aug 29 2013
From Michel Lagneau, May 04 2015: (Start)
Integer area A of equilateral triangles whose side lengths are in the commutative ring Z[3^(1/4)] = {a + b*3^(1/4) + c*3^(1/2) + d*3^(3/4), a,b,c and d in Z}.
The area of an equilateral triangle of side length k is given by A = k^2*sqrt(3)/4. In the ring Z[3^(1/4)], if k = q*3^(1/4), then A = 3*q^2/4 is an integer if q is even. Example: 27 is in the sequence because the area of the triangle (6*3^(1/4), 6*3^(1/4), 6*3^(1/4)) is 27. (End)
a(n) is 2*sqrt(3) times the area of a 30-60-90 triangle with short side n. Also, 3 times the area of an n X n square. - Wesley Ivan Hurt, Apr 06 2016
Consider the hexagonal tiling of the plane. Extract any four hexagons adjacent by edge. This can be done in three ways. Fold the four hexagons so that all opposite faces occupy parallel planes. For all parallel projections of the resulting object, at least two correspond to area a(n) for side length of n of the original hexagons. - Torlach Rush, Aug 17 2022
The sequence terms are the exponents in the expansion of Product_{n >= 1} (1 - q^(3*n))/(1 + q^(3*n)) = ( Sum_{n in Z} q^(n*(3*n+1)/2) ) / ( Product_{n >= 1} 1 + q^n ) = 1 - 2*q^3 + 2*q^12 - 2*q^27 + 2*q^48 - 2*q^75 + - .... - Peter Bala, Dec 30 2024

Examples

			From _Ilya Gutkovskiy_, Apr 13 2016: (Start)
Illustration of initial terms:
.                                              o
.                                             o o
.                                            o   o
.                          o                o  o  o
.                         o o              o  o o  o
.                        o   o            o  o   o  o
.           o           o  o  o          o  o  o  o  o
.          o o         o  o o  o        o  o  o o  o  o
.         o   o       o  o   o  o      o  o  o   o  o  o
.  o     o  o  o     o  o  o  o  o    o  o  o  o  o  o  o
. o o   o  o o  o   o  o  o o  o  o  o  o  o  o o  o  o  o
. n=1      n=2            n=3                 n=4
(End)
		

Crossrefs

Programs

  • Haskell
    a033428 = (* 3) . (^ 2)
    a033428_list = 0 : 3 : 12 : zipWith (+) a033428_list
       (map (* 3) $ tail $ zipWith (-) (tail a033428_list) a033428_list)
    -- Reinhard Zumkeller, Jul 11 2013
    
  • Magma
    [3*n^2: n in [0..50]]; // Vincenzo Librandi, May 18 2015
    
  • Maple
    seq(3*n^2, n=0..46); # Nathaniel Johnston, Jun 26 2011
  • Mathematica
    3 Range[0, 50]^2
    LinearRecurrence[{3, -3, 1}, {0, 3, 12}, 50] (* Harvey P. Dale, Feb 16 2013 *)
  • Maxima
    makelist(3*n^2,n,0,30); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    a(n)=3*n^2
    
  • Python
    def a(n): return 3 * (n**2) # Torlach Rush, Aug 25 2022

Formula

a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>2.
G.f.: 3*x*(1+x)/(1-x)^3. - R. J. Mathar, Sep 09 2008
Main diagonal of triangle in A132111: a(n) = A132111(n,n). - Reinhard Zumkeller, Aug 10 2007
A214295(a(n)) = -1. - Reinhard Zumkeller, Jul 12 2012
a(n) = A215631(n,n) for n > 0. - Reinhard Zumkeller, Nov 11 2012
a(n) = A174709(6n+2). - Philippe Deléham, Mar 26 2013
a(n) = a(n-1) + 6*n - 3, with a(0)=0. - Jean-Bernard François, Oct 04 2013
E.g.f.: 3*x*(1 + x)*exp(x). - Ilya Gutkovskiy, Apr 13 2016
a(n) = t(3*n) - 3*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): A000217(3*n) - 3*A000217(n). - Bruno Berselli, Aug 31 2017
a(n) = A000326(n) + A005449(n). - Bruce J. Nicholson, Jan 10 2020
From Amiram Eldar, Jul 03 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/18 (A086463).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/36. (End)
From Amiram Eldar, Feb 03 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = sqrt(3)*sinh(Pi/sqrt(3))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(3)*sin(Pi/sqrt(3))/Pi. (End)
a(n) = A003215(n) - A016777(n). - Leo Tavares, Apr 29 2023

Extensions

Better description from N. J. A. Sloane, May 15 1998
Showing 1-10 of 129 results. Next