A129444
Numbers k such that the centered triangular number A005448(k) = 3*k*(k-1)/2 + 1 is a perfect square.
Original entry on oeis.org
0, 1, 2, 7, 16, 65, 154, 639, 1520, 6321, 15042, 62567, 148896, 619345, 1473914, 6130879, 14590240, 60689441, 144428482, 600763527, 1429694576, 5946945825, 14152517274, 58868694719, 140095478160, 582740001361, 1386802264322
Offset: 1
G.f. = x^2 + 2*x^3 + 7*x^4 + 16*x^5 + 65*x^6 + 154*x^7 + 639*x^8 + 1520*x^9 + ...
Cf.
A005448 (centered triangular numbers).
Cf.
A129445 (numbers k > 0 such that k^2 is a centered triangular number).
-
I:=[0,1,2,7,16,65]; [n le 6 select I[n] else 11*Self(n-2) -11*Self(n-4) +Self(n-6): n in [1..40]]; // G. C. Greubel, Feb 07 2024
-
Do[ f = 3n(n-1)/2 + 1; If[ IntegerQ[ Sqrt[f] ], Print[ n ] ], {n,1,150000} ]
a[1]=0;a[2]=1;a[3]=2;a[4]=7;a[5]=16;a[6]=65;a[n_]:=a[n]=11(a[n-2]-a[n-4])+a[n-6];Table[a[n], {n, 100}] (* Zak Seidov, Apr 17 2007 *)
LinearRecurrence[{1,10,-10,-1,1},{0,1,2,7,16},30] (* Harvey P. Dale, Dec 06 2012 *)
-
{a(n) = my(m); m = if( n<1, 2-n, n-1); (n<1) + (-1)^(n<1) * polcoeff( (x + x^2 - 5*x^3 - x^4) / ((1 - x) * (1 - 10*x^2 + x^4)) + x * O(x^m), m)}; /* Michael Somos, Apr 05 2008 */
-
def A129444_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x^2*(1+x-5*x^2-x^3)/((1-x)*(1-10*x^2+x^4)) ).list()
a=A129444_list(40); a[1:] # G. C. Greubel, Feb 07 2024
A253673
Indices of centered triangular numbers (A005448) that are also centered octagonal numbers (A016754).
Original entry on oeis.org
1, 16, 65, 1520, 6321, 148896, 619345, 14590240, 60689441, 1429694576, 5946945825, 140095478160, 582740001361, 13727927165056, 57102573187505, 1345196766697280, 5595469432374081, 131815555209168336, 548298901799472385, 12916579213731799600
Offset: 1
16 is in the sequence because the 16th centered triangular number is 361, which is also the 10th centered octagonal number.
-
LinearRecurrence[{1,98,-98,-1,1},{1,16,65,1520,6321},20] (* Harvey P. Dale, Aug 07 2023 *)
-
Vec(x*(3*x-1)*(5*x^2+18*x+1)/((x-1)*(x^2-10*x+1)*(x^2+10*x+1)) + O(x^100))
A249483
Squares (A000290) which are also centered triangular numbers (A005448).
Original entry on oeis.org
1, 4, 64, 361, 6241, 35344, 611524, 3463321, 59923081, 339370084, 5871850384, 33254804881, 575381414521, 3258631508224, 56381506772644, 319312633001041, 5524812282304561, 31289379402593764, 541375222159074304, 3066039868821187801, 53049246959306977201
Offset: 1
64 is in the sequence because the 8th square is 64, which is also the 7th centered triangular number.
-
I:=[1,4,64,361,6241]; [n le 5 select I[n] else Self(n-1)+98*Self(n-2)-98*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Jan 20 2015
-
CoefficientList[Series[(x^2 - 5 x + 1) (x^2 + 8 x + 1) / ((1 - x) (x^2 - 10 x + 1) (x^2 + 10 x + 1)), {x, 0, 70}], x] (* Vincenzo Librandi, Jan 20 2015 *)
-
Vec(-x*(x^2-5*x+1)*(x^2+8*x+1)/((x-1)*(x^2-10*x+1)*(x^2+10*x+1)) + O(x^100))
A253476
Indices of centered triangular numbers (A005448) which are also centered heptagonal numbers (A069099).
Original entry on oeis.org
1, 15, 70, 1596, 7645, 175491, 840826, 19302360, 92483161, 2123084055, 10172306830, 233519943636, 1118861268085, 25685070715851, 123064567182466, 2825124258799920, 13535983528803121, 310737983397275295, 1488835123601160790, 34178353049441482476
Offset: 1
15 is in the sequence because the 15th centered triangular number is 316, which is also the 10th centered heptagonal number.
-
LinearRecurrence[{1,110,-110,-1,1},{1,15,70,1596,7645},30] (* Harvey P. Dale, Jun 14 2016 *)
-
Vec(x*(14*x^3+55*x^2-14*x-1)/((x-1)*(x^4-110*x^2+1)) + O(x^100))
A253477
Indices of centered heptagonal numbers (A069099) which are also centered triangular numbers (A005448).
Original entry on oeis.org
1, 10, 46, 1045, 5005, 114886, 550450, 12636361, 60544441, 1389884770, 6659338006, 152874688285, 732466636165, 16814825826526, 80564670640090, 1849477966229521, 8861381303773681, 203425761459420730, 974671378744464766, 22374984282570050725
Offset: 1
10 is in the sequence because the 10th centered heptagonal number is 316, which is also the 15th centered triangular number.
-
LinearRecurrence[{1,110,-110,-1,1},{1,10,46,1045,5005},30] (* Harvey P. Dale, Aug 13 2018 *)
-
Vec(-x*(x^4+9*x^3-74*x^2+9*x+1)/((x-1)*(x^4-110*x^2+1)) + O(x^100))
A253674
Indices of centered octagonal numbers (A016754) which are also centered triangular numbers (A005448).
Original entry on oeis.org
1, 10, 40, 931, 3871, 91180, 379270, 8934661, 37164541, 875505550, 3641745700, 85790609191, 356853914011, 8406604195120, 34968041827330, 823761420512521, 3426511245164281, 80720212606031890, 335763133984272160, 7909757073970612651, 32901360619213507351
Offset: 1
10 is in the sequence because the 10th centered octagonal number is 361, which is also the 16th centered triangular number.
-
LinearRecurrence[{1,98,-98,-1,1},{1,10,40,931,3871},30] (* Harvey P. Dale, Oct 01 2015 *)
-
Vec(-x*(x^2-5*x+1)*(x^2+14*x+1)/((x-1)*(x^2-10*x+1)*(x^2+10*x+1)) + O(x^100))
A253675
Centered triangular numbers (A005448) which are also centered octagonal numbers (A016754).
Original entry on oeis.org
1, 361, 6241, 3463321, 59923081, 33254804881, 575381414521, 319312633001041, 5524812282304561, 3066039868821187801, 53049246959306977201, 29440114501108412261161, 509378863778453312776441, 282683976373603105710477121, 4891055796951461749972406281
Offset: 1
361 is in the sequence because it is the 16th centered triangular number and the 10th centered octagonal number.
-
LinearRecurrence[{1,9602,-9602,-1,1},{1,361,6241,3463321,59923081},20] (* Harvey P. Dale, Dec 09 2017 *)
-
Vec(-x*(x^4+360*x^3-3722*x^2+360*x+1)/((x-1)*(x^2-98*x+1)*(x^2+98*x+1)) + O(x^100))
A253689
Centered triangular numbers (A005448) which are also centered heptagonal numbers (A069099).
Original entry on oeis.org
1, 316, 7246, 3818431, 87657571, 46195373386, 1060481282176, 558871623400861, 12829702464103141, 6761228853708238456, 155213739350238513106, 81797346113290645435291, 1877775805829483067448711, 989584286517361374767907526, 22717331543711346799755988036
Offset: 1
316 is in the sequence because it is the 15th centered triangular number and the 10th centered heptagonal number.
-
I:=[1,316,7246,3818431,87657571]; [n le 5 select I[n] else Self(n-1)+12098*Self(n-2)-12098*Self(n-3)-Self(n-4)+Self(n-5): n in [1..20]]; // Vincenzo Librandi, Jan 10 2015
-
LinearRecurrence[{1, 12098, -12098, -1, 1}, {1, 316, 7246, 3818431, 87657571}, 20] (* or *) CoefficientList[Series[(x^4 + 315 x^3 - 5168 x^2 + 315 x + 1) / ((1 - x) (x^2 - 110 x + 1)(x^2 + 110 x + 1)), {x, 0, 20}], x] (* Vincenzo Librandi, Jan 10 2015 *)
-
Vec(-x*(x^4+315*x^3-5168*x^2+315*x+1)/((x-1)*(x^2-110*x+1)*(x^2+110*x+1)) + O(x^100))
A253821
Indices of octagonal numbers (A000567) which are also centered triangular numbers (A005448).
Original entry on oeis.org
1, 181, 589, 208489, 679321, 240595741, 783935461, 277647276241, 904660842289, 320404716185989, 1043977828065661, 369746764831354681, 1204749508926930121, 426687446210667115501, 1390279889323849293589, 492396943180345019933089, 1604381787530213157871201
Offset: 1
181 is in the sequence because the 181st octagonal number is 97921, which is also the 256th centered triangular number.
A253822
Indices of centered triangular numbers (A005448) which are also octagonal numbers (A000567).
Original entry on oeis.org
1, 256, 833, 294848, 960705, 340253760, 1108652161, 392652543616, 1279383632513, 453120695078528, 1476407603267265, 522900889468077120, 1703773094786790721, 603427173325465917376, 1966152674976353224193, 696354435116698200574208, 2268938483149616833927425
Offset: 1
256 is in the sequence because the 256th centered triangular number is 97921, which is also the 181st octagonal number.
-
LinearRecurrence[{1,1154,-1154,-1,1},{1,256,833,294848,960705},20] (* Harvey P. Dale, Jul 19 2019 *)
-
Vec(x*(255*x^3+577*x^2-255*x-1)/((x-1)*(x^2-34*x+1)*(x^2+34*x+1)) + O(x^100))
Showing 1-10 of 147 results.
Comments