cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A253821 Indices of octagonal numbers (A000567) which are also centered triangular numbers (A005448).

Original entry on oeis.org

1, 181, 589, 208489, 679321, 240595741, 783935461, 277647276241, 904660842289, 320404716185989, 1043977828065661, 369746764831354681, 1204749508926930121, 426687446210667115501, 1390279889323849293589, 492396943180345019933089, 1604381787530213157871201
Offset: 1

Views

Author

Colin Barker, Jan 14 2015

Keywords

Comments

Also positive integers x in the solutions to 6*x^2 - 3*y^2 - 4*x + 3*y - 2 = 0, the corresponding values of y being A253822.

Examples

			181 is in the sequence because the 181st octagonal number is 97921, which is also the 256th centered triangular number.
		

Crossrefs

Programs

  • PARI
    Vec(-x*(x^4+180*x^3-746*x^2+180*x+1)/((x-1)*(x^2-34*x+1)*(x^2+34*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+1154*a(n-2)-1154*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+180*x^3-746*x^2+180*x+1) / ((x-1)*(x^2-34*x+1)*(x^2+34*x+1)).

A253823 Octagonal numbers (A000567) which are also centered triangular numbers (A005448).

Original entry on oeis.org

1, 97921, 1039585, 130402572385, 1384429704481, 173658931280825761, 1843664419471976641, 231264030011583194717761, 2455233718711319470593985, 307977546462671843639087352385, 3269669116478082433043125969441, 410138010309759307549971991199125921
Offset: 1

Views

Author

Colin Barker, Jan 14 2015

Keywords

Examples

			97921 is in the sequence because it is the 181st octagonal number and the 256th centered triangular number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,1331714,-1331714,-1,1},{1,97921,1039585,130402572385,1384429704481},20] (* Harvey P. Dale, Jan 22 2025 *)
  • PARI
    Vec(-x*(x^4+97920*x^3-390050*x^2+97920*x+1)/((x-1)*(x^2-1154*x+1)*(x^2+1154*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+1331714*a(n-2)-1331714*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+97920*x^3-390050*x^2+97920*x+1) / ((x-1)*(x^2-1154*x+1)*(x^2+1154*x+1)).
Showing 1-2 of 2 results.