cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A253477 Indices of centered heptagonal numbers (A069099) which are also centered triangular numbers (A005448).

Original entry on oeis.org

1, 10, 46, 1045, 5005, 114886, 550450, 12636361, 60544441, 1389884770, 6659338006, 152874688285, 732466636165, 16814825826526, 80564670640090, 1849477966229521, 8861381303773681, 203425761459420730, 974671378744464766, 22374984282570050725
Offset: 1

Views

Author

Colin Barker, Jan 02 2015

Keywords

Comments

Also positive integers y in the solutions to 3*x^2 - 7*y^2 - 3*x + 7*y = 0, the corresponding values of x being A253476.

Examples

			10 is in the sequence because the 10th centered heptagonal number is 316, which is also the 15th centered triangular number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,110,-110,-1,1},{1,10,46,1045,5005},30] (* Harvey P. Dale, Aug 13 2018 *)
  • PARI
    Vec(-x*(x^4+9*x^3-74*x^2+9*x+1)/((x-1)*(x^4-110*x^2+1)) + O(x^100))

Formula

a(n) = a(n-1)+110*a(n-2)-110*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+9*x^3-74*x^2+9*x+1) / ((x-1)*(x^4-110*x^2+1)).

A253689 Centered triangular numbers (A005448) which are also centered heptagonal numbers (A069099).

Original entry on oeis.org

1, 316, 7246, 3818431, 87657571, 46195373386, 1060481282176, 558871623400861, 12829702464103141, 6761228853708238456, 155213739350238513106, 81797346113290645435291, 1877775805829483067448711, 989584286517361374767907526, 22717331543711346799755988036
Offset: 1

Views

Author

Colin Barker, Jan 09 2015

Keywords

Examples

			316 is in the sequence because it is the 15th centered triangular number and the 10th centered heptagonal number.
		

Crossrefs

Programs

  • Magma
    I:=[1,316,7246,3818431,87657571]; [n le 5 select I[n] else  Self(n-1)+12098*Self(n-2)-12098*Self(n-3)-Self(n-4)+Self(n-5): n in [1..20]]; // Vincenzo Librandi, Jan 10 2015
  • Mathematica
    LinearRecurrence[{1, 12098, -12098, -1, 1}, {1, 316, 7246, 3818431, 87657571}, 20] (* or *) CoefficientList[Series[(x^4 + 315 x^3 - 5168 x^2 + 315 x + 1) / ((1 - x) (x^2 - 110 x + 1)(x^2 + 110 x + 1)), {x, 0, 20}], x] (* Vincenzo Librandi, Jan 10 2015 *)
  • PARI
    Vec(-x*(x^4+315*x^3-5168*x^2+315*x+1)/((x-1)*(x^2-110*x+1)*(x^2+110*x+1)) + O(x^100))
    

Formula

a(n) = a(n-1)+12098*a(n-2)-12098*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+315*x^3-5168*x^2+315*x+1) / ((x-1)*(x^2-110*x+1)*(x^2+110*x+1)).
Showing 1-2 of 2 results.