cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A129444 Numbers k such that the centered triangular number A005448(k) = 3*k*(k-1)/2 + 1 is a perfect square.

Original entry on oeis.org

0, 1, 2, 7, 16, 65, 154, 639, 1520, 6321, 15042, 62567, 148896, 619345, 1473914, 6130879, 14590240, 60689441, 144428482, 600763527, 1429694576, 5946945825, 14152517274, 58868694719, 140095478160, 582740001361, 1386802264322
Offset: 1

Views

Author

Alexander Adamchuk, Apr 15 2007

Keywords

Comments

Corresponding numbers m > 0 such that m^2 is a centered triangular number are listed in A129445 = {1, 2, 8, 19, 79, 188, 782, 1861, 7741, 18422, 76628, 182359, ...}.

Examples

			G.f. = x^2 + 2*x^3 + 7*x^4 + 16*x^5 + 65*x^6 + 154*x^7 + 639*x^8 + 1520*x^9 + ...
		

Crossrefs

Cf. A005448 (centered triangular numbers).
Cf. A129445 (numbers k > 0 such that k^2 is a centered triangular number).

Programs

  • Magma
    I:=[0,1,2,7,16,65]; [n le 6 select I[n] else 11*Self(n-2) -11*Self(n-4) +Self(n-6): n in [1..40]]; // G. C. Greubel, Feb 07 2024
    
  • Mathematica
    Do[ f = 3n(n-1)/2 + 1; If[ IntegerQ[ Sqrt[f] ], Print[ n ] ], {n,1,150000} ]
    a[1]=0;a[2]=1;a[3]=2;a[4]=7;a[5]=16;a[6]=65;a[n_]:=a[n]=11(a[n-2]-a[n-4])+a[n-6];Table[a[n], {n, 100}] (* Zak Seidov, Apr 17 2007 *)
    LinearRecurrence[{1,10,-10,-1,1},{0,1,2,7,16},30] (* Harvey P. Dale, Dec 06 2012 *)
  • PARI
    {a(n) = my(m); m = if( n<1, 2-n, n-1); (n<1) + (-1)^(n<1) * polcoeff( (x + x^2 - 5*x^3 - x^4) / ((1 - x) * (1 - 10*x^2 + x^4)) + x * O(x^m), m)}; /* Michael Somos, Apr 05 2008 */
    
  • SageMath
    def A129444_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^2*(1+x-5*x^2-x^3)/((1-x)*(1-10*x^2+x^4)) ).list()
    a=A129444_list(40); a[1:] # G. C. Greubel, Feb 07 2024

Formula

a(n) = 1/2 + sqrt(1/4 + (2/3)*(A129445(n)^2 - 1)).
a(n) = 11*(a(n-2) - a(n-4)) + a(n-6); a(1)=0; a(2)=1; a(3)=2; a(4)=7; a(5)=16; a(6)=65. - Zak Seidov, Apr 17 2007
a(n) = 1 - a(-n+3) for all n in Z. - Michael Somos, Apr 05 2008
G.f.: x^2*(1 + x - 5*x^2 - x^3) / ((1 - x) * (1 - 10*x^2 + x^4)). - Michael Somos, Apr 05 2008
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) - a(n-4) + a(n-5); a(1)=0, a(2)=1, a(3)=2, a(4)=7, a(5)=16. - Harvey P. Dale, Dec 06 2012
a(n) = (1/2)*(2*[n=0] + 1 + ((1+(-1)^n)/2)*(31*b(n/2) - 3*b(n/2 + 1)) + ((1-(-1)^n)/2)*(13*b((n-1)/2) - b((n+1)/2))), where b(n)=A004189(n). - G. C. Greubel, Feb 07 2024

Extensions

More terms from Zak Seidov, Apr 17 2007

A129445 Numbers k > 0 such that k^2 is a centered triangular number.

Original entry on oeis.org

1, 2, 8, 19, 79, 188, 782, 1861, 7741, 18422, 76628, 182359, 758539, 1805168, 7508762, 17869321, 74329081, 176888042, 735782048, 1751011099, 7283491399, 17333222948, 72099131942, 171581218381, 713707828021, 1698478960862, 7064979148268, 16813208390239
Offset: 1

Views

Author

Alexander Adamchuk, Apr 15 2007, Apr 26 2007

Keywords

Comments

Corresponding numbers n such that centered triangular number A005448(n) is a perfect square are listed in A129444(n).
Consider Diophantine equation 3*x*(x-1) + 2 - 2*y^2 = 0. Sequence gives solutions for y. - Zak Seidov, Jun 11 2013
Positive values of x (or y) satisfying x^2 - 10xy + y^2 + 15 = 0. - Colin Barker, Feb 09 2014
Nonnegative values of x of solutions (x, y) to the Diophantine equation 8*x^2 - 3*y^2 = 5. - Jon E. Schoenfield, Feb 02 2021

Crossrefs

Prime terms are listed in A129446.
Cf. A125602 (prime CTN), A184481 (semiprime CTN), A125603.

Programs

  • Mathematica
    Do[f = 3n(n-1)/2 + 1; If[IntegerQ[Sqrt[f]], Print[Sqrt[f]]], {n, 150000}]
    LinearRecurrence[{0, 10, 0, -1}, {1, 2, 8, 19}, 30] (* T. D. Noe, Jun 13 2013 *)

Formula

a(n) = sqrt(3*A129444(n)*(A129444(n) - 1)/2 + 1).
G.f.: x*(1-x)*(1+3*x+x^2)/(1-10*x^2+x^4). - Colin Barker, Apr 11 2012
a(n) = 10*a(n-2) - a(n-4), a(1..4) = 1, 2, 8, 19. - Zak Seidov, Jun 11 2013

Extensions

More terms from Alexander Adamchuk, Apr 26 2007
Showing 1-2 of 2 results.