cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A276537 Alternating binomial sums of the cubes of the central binomial coefficients.

Original entry on oeis.org

1, 7, 201, 7375, 312265, 14365887, 697859169, 35226348087, 1829569294665, 97138289500735, 5248514415816721, 287657066913117447, 15953440327189548001, 893653778439275931175, 50488236061157830951545, 2873526763346873838886815
Offset: 0

Views

Author

Emanuele Munarini, Nov 16 2016

Keywords

Crossrefs

Cf. A276536.
Similar sums of m-powers of the central binomial coefficients: A002426 (m=1), A278934 (m=2), this sequence (m=3).

Programs

  • Magma
    [&+[(-1)^(n-k)*Binomial(n,k)*Binomial(2*k,k)^3: k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Dec 03 2016
  • Mathematica
    Table[Sum[Binomial[n,k]Binomial[2k,k]^3(-1)^(n-k),{k,0,n}],{n,0,100}]
  • Maxima
    makelist(sum(binomial(n,k)*binomial(2*k,k)^3*(-1)^(n-k),k,0,n),n,0,12);
    

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*binomial(2*k,k)^3.
Recurrence: (n^3+12*n^2+48*n+64)*a(n+4)-(60*n^3+630*n^2+2204*n+2569)*a(n+3)-(186*n^3+1674*n^2+5037*n+5067)*a(n+2)-94*(2*n^3+15*n^2+37*n+30)*a(n+1)-63*(n^3+6*n^2+11*n+6)*a(n)=0.
G.f.: (4/Pi^2)*K(1/2-1/2*sqrt((1-63*t)/(1+t)))^2/(1+t), where K(x) is the complete elliptic integral of the first kind (defined as in MathWorld or in The Wolfram Functions Site).
a(n) ~ 3^(2*n+3) * 7^(n+3/2) / (512 * Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Nov 16 2016
a(n) = (-1)^n*4F3(1/2,1/2,1/2,-n; 1,1,1; 64). - Ilya Gutkovskiy, Nov 25 2016
Showing 1-1 of 1 results.