A294645 a(n) = Sum_{d|n} d^(n+1).
1, 9, 82, 1057, 15626, 282252, 5764802, 134480385, 3486843451, 100048830174, 3138428376722, 107006334784468, 3937376385699290, 155572843119354936, 6568408508343827972, 295150156996346511361, 14063084452067724991010, 708236696816416252145973
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..385
- Eric Weisstein's World of Mathematics, Divisor Function
Programs
-
Mathematica
Table[DivisorSigma[n + 1, n], {n, 1, 20}] (* Vaclav Kotesovec, Oct 07 2020 *)
-
PARI
{a(n) = sigma(n, n+1)}
-
PARI
N=66; x='x+O('x^N); Vec(sum(k=1, N, k^(k+1)*x^k/(1-(k*x)^k)))
-
PARI
N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, 1-(k*x)^k)))) \\ Seiichi Manyama, Jun 02 2019
Formula
G.f.: Sum_{k>0} k^(k+1)*x^k/(1-(k*x)^k).
L.g.f.: -log(Product_{k>=1} (1 - (k*x)^k)) = Sum_{k>=1} a(k)*x^k/k. - Seiichi Manyama, Jun 02 2019
a(n) ~ n^(n+1). - Vaclav Kotesovec, Oct 07 2020
Comments