cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 58 results. Next

A067313 Numbers k such that sigma_k(k)/k is an integer, where sigma_k(k) is the sum of the k-th powers of the divisors of k (A023887).

Original entry on oeis.org

1, 10, 130, 135, 147, 150, 228, 250, 350, 364, 410, 444, 492, 876, 891, 945, 1014, 1308, 1372, 1550, 1690, 1950, 2050, 2210, 2373, 2565, 2850, 3045, 3050, 3250, 3375, 3876, 4108, 4185, 4905, 4995, 5050, 5070, 5145, 5330, 5439, 5481, 6150, 6250, 6321, 6615, 6890, 7514
Offset: 1

Views

Author

Labos Elemer, Jan 14 2002

Keywords

Examples

			If k = 10, then sigma(10,10) = 1 + 1024 + 9765625 + 10000000000 = 1009766650 is divisible by k = 10.
		

Crossrefs

Cf. A023887.

Programs

  • Mathematica
    Do[s=DivisorSigma[n, n]; If[IntegerQ[s/n], Print[n]], {n, 1, 10000}]
    Select[Range[6500],Divisible[DivisorSigma[#,#],#]&] (* Harvey P. Dale, Feb 06 2019 *)
  • PARI
    isok(k) = !(sigma(k, k) % k); \\ Michel Marcus, Aug 10 2020
    
  • PARI
    is(n) = {my(d = divisors(n), v = vecsum(vector(#d - 1, i, Mod(d[i], n)^n))); lift(v)==0} \\ David A. Corneth, Aug 10 2020

A109974 Array read by downwards antidiagonals: sigma_k(n) for n >= 1, k >= 0.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 3, 4, 5, 1, 2, 7, 10, 9, 1, 4, 6, 21, 28, 17, 1, 2, 12, 26, 73, 82, 33, 1, 4, 8, 50, 126, 273, 244, 65, 1, 3, 15, 50, 252, 626, 1057, 730, 129, 1, 4, 13, 85, 344, 1394, 3126, 4161, 2188, 257, 1, 2, 18, 91, 585, 2402, 8052, 15626, 16513, 6562, 513, 1
Offset: 0

Views

Author

Paul Barry, Jul 06 2005

Keywords

Comments

Rows sums are A108639. Antidiagonal sums are A109976. Matrix inverse is A109977.
From Wolfdieter Lang, Jan 29 2016: (Start)
The sum of the (k-1)th power of the divisors of n, sigma_(k-1)(n), appears also as eigenvalue lambda(k, n) of the Hecke operators T_n, n a positive integer, acting on the normalized Eisenstein series E_k(q) = ((2*Pi*i)^k/((k-1)!*Zeta(k))*G_k(q) with even k >= 4 and q = 2*Pi*i*z, where z is from the upper half of the complex plane: T_n E_k = sigma_(k-1)(n)*E_k. These Eisenstein series are entire modular forms of weight k, and each E_k(q) is a simultaneous eigenform of the Hecke operators T_n, for every n >= 1.
This results from the Fourier coefficients of E_k(q) = Sum_{m>=0} E(k, m)*q^m, with E(k, 0) =1 and E(k, m) = ((2*Pi*i)^k / ((k-1)!*Zeta(k))* sigma_(k-1)(m) for m >= 1, together with the Fourier coefficients of T_n E_k. The eigenvalues lambda(n, k) = (Sum_{d | gcd(n,m)} d^{k-1}*E(k, m*n/d^2)) / E(k, m) for each m >= 0. For m=0 this becomes lambda(n, k) = sigma_(k-1)(n).
For Hecke operators, Fourier coefficients and simultaneous eigenforms see, e.g., the Koecher - Krieg reference, p. 207, eqs. (5) and (6) and p. 211, section 4, or the Apostol reference, p. 120, eq. (13), pp. 129 - 134. (End)

Examples

			Start of array:
  1,  2,  2,   3,   2,    4, ...
  1,  3,  4,   7,   6,   12, ...
  1,  5, 10,  21,  26,   50, ...
  1,  9, 28,  73, 126,  252, ...
  1, 17, 82, 273, 626, 1394, ...
  ...
The triangle T(m, k) with row offset 1 starts:
  m\k 0  1  2   3    4    5    6    7   8  9 ...
  1:  1
  2:  2  1
  3:  2  3  1
  4:  3  4  5   1
  5:  2  7 10   9    1
  6:  4  6 21  28   17    1
  7:  2 12 26  73   82   33    1
  8:  4  8 50 126  273  244   65    1
  9:  3 15 50 252  626 1057  730  129   1
  10: 4 13 85 344 1394 3126 4161 2188 257  1
  ... - _Wolfdieter Lang_, Jan 14 2016
		

References

  • Tom M. Apostol, Modular functions and Dirichlet series in number theory, second Edition, Springer, 1990, pp. 120, 129 - 134.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 407.
  • Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2. Auflage, Springer, 2007, pp. 207, 211.

Crossrefs

Programs

  • Magma
    A109974:= func< n,k | DivisorSigma(k-1, n-k+1) >;
    [A109974(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 18 2023
    
  • Maple
    with(numtheory):
    seq(seq(sigma[k](1+d-k), k=0..d), d=0..12);  # Alois P. Heinz, Feb 06 2013
  • Mathematica
    rows=12; Flatten[Table[DivisorSigma[k-n, n], {k,1,rows}, {n,k,1,-1}]] (* Jean-François Alcover, Nov 15 2011 *)
  • SageMath
    def A109974(n,k): return sigma(n-k+1, k-1)
    flatten([[A109974(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 18 2023

Formula

Regarded as a triangle, T(n, k) = if(k<=n, sigma(k-1, n-k+1), 0). - Franklin T. Adams-Watters, Jul 17 2006
If the row index (the index of the antidiagonal of the array) is taken as m with offset 1 the triangle is T(m, k) = sigma_k(m-k), 1 <= k+1 <= m, otherwise 0. - Wolfdieter Lang, Jan 14 2016
G.f. for the triangle with offset 1: G(x,y) = Sum_{j>=1} x^j/((1-x^j)*(1-j*x*y)). - Robert Israel, Jan 14 2016

A023881 Number of partitions in expanding space: sigma(n,q) is the sum of the q-th powers of the divisors of n.

Original entry on oeis.org

1, 1, 3, 12, 82, 725, 8811, 128340, 2257687, 45658174, 1052672116, 27108596725, 772945749970, 24137251258926, 819742344728692, 30069017799172228, 1184889562926838573, 49914141857616862435
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + x + 3*x^2 + 12*x^3 + 82*x^4 + 725*x^5 + 8811*x^6 + 128340*x^7 + 2257687*x^8 + ...
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-k^k*x^k)^(1/k): k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
  • Maple
    seq(coeff(series(mul((1-k^k*x^k)^(-1/k),k=1..n),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 31 2018
  • Mathematica
    nmax=30; CoefficientList[Series[Product[1/(1-k^k*x^k)^(1/k), {k, 1, nmax}], {x, 0, nmax}], x] (* G. C. Greubel, Oct 31 2018 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( exp( sum( k=1, n, sigma(k, k) * x^k / k, x * O(x^n))), n))} /* Michael Somos, Feb 15 2006 */
    
  • PARI
    {a(n)=if(n<0,0,polcoeff(prod(k=1,n,(1-k^k*x^k+x*O(x^n))^(-1/k)),n))} /* Paul D. Hanna */
    

Formula

G.f.: exp( Sum_{k>0} sigma_k(k) * x^k / k). - Michael Somos, Feb 15 2006
G.f.: Product_{n>=1} (1 - n^n*x^n)^(-1/n). - Paul D. Hanna, Mar 08 2011
a(n) ~ n^(n-1). - Vaclav Kotesovec, Oct 08 2016

A342628 a(n) = Sum_{d|n} d^(n-d).

Original entry on oeis.org

1, 2, 2, 6, 2, 45, 2, 322, 731, 3383, 2, 132901, 2, 827641, 10297068, 33570818, 2, 2578617270, 2, 44812807567, 678610493340, 285312719189, 2, 393061010002613, 95367431640627, 302875123369471, 150094917726535604, 569939345952661545, 2, 105474306078445349841, 2
Offset: 1

Views

Author

Seiichi Manyama, Mar 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(n - #) &]; Array[a, 30] (* Amiram Eldar, Mar 17 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^(n-d));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-(k*x)^k)))
    
  • Python
    from sympy import divisors
    def A342628(n): return sum(d**(n-d) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 19 2022

Formula

G.f.: Sum_{k>=1} x^k/(1 - (k * x)^k).
If p is prime, a(p) = 2.

A217872 a(n) = sigma(n)^n.

Original entry on oeis.org

1, 9, 64, 2401, 7776, 2985984, 2097152, 2562890625, 10604499373, 3570467226624, 743008370688, 232218265089212416, 793714773254144, 21035720123168587776, 504857282956046106624, 727423121747185263828481, 2185911559738696531968, 43567528752021332753202420081
Offset: 1

Views

Author

Paul D. Hanna, Nov 01 2012

Keywords

Comments

Here sigma(n) = A000203(n) is the sum of the divisors of n.
Compare to A023887(n) = sigma(n,n).

Examples

			L.g.f.: L(x) = x + 3^2*x^2/2 + 4^3*x^3/3 + 7^4*x^4/4 + 6^5*x^5/5 + 12^6*x^6/6 +...
where exponentiation yields the g.f. of A156217:
exp(L(x)) = 1 + x + 5*x^2 + 26*x^3 + 634*x^4 + 2273*x^5 + 502568*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1, n]^n, {n, 1, 20}] (* Amiram Eldar, Nov 16 2020 *)
  • PARI
    {a(n)=sigma(n)^n}
    for(n=1,20,print1(a(n),", "))

Formula

Logarithmic derivative of A156217.
From Amiram Eldar, Nov 16 2020: (Start)
Sum_{n>=1} 1/a(n) = A215140.
Sum_{n>=1} (-1)^(n+1)/a(n) = A215141. (End)

A294645 a(n) = Sum_{d|n} d^(n+1).

Original entry on oeis.org

1, 9, 82, 1057, 15626, 282252, 5764802, 134480385, 3486843451, 100048830174, 3138428376722, 107006334784468, 3937376385699290, 155572843119354936, 6568408508343827972, 295150156996346511361, 14063084452067724991010, 708236696816416252145973
Offset: 1

Views

Author

Seiichi Manyama, Nov 05 2017

Keywords

Crossrefs

Column k=1 of A308504.

Programs

  • Mathematica
    Table[DivisorSigma[n + 1, n], {n, 1, 20}] (* Vaclav Kotesovec, Oct 07 2020 *)
  • PARI
    {a(n) = sigma(n, n+1)}
    
  • PARI
    N=66; x='x+O('x^N); Vec(sum(k=1, N, k^(k+1)*x^k/(1-(k*x)^k)))
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, 1-(k*x)^k)))) \\ Seiichi Manyama, Jun 02 2019

Formula

G.f.: Sum_{k>0} k^(k+1)*x^k/(1-(k*x)^k).
L.g.f.: -log(Product_{k>=1} (1 - (k*x)^k)) = Sum_{k>=1} a(k)*x^k/k. - Seiichi Manyama, Jun 02 2019
a(n) ~ n^(n+1). - Vaclav Kotesovec, Oct 07 2020

A321141 a(n) = Sum_{d|n} sigma_n(d).

Original entry on oeis.org

1, 6, 29, 291, 3127, 48246, 823545, 16909060, 387459858, 10019533302, 285311670613, 8920489178073, 302875106592255, 11113363271736486, 437893951444713443, 18447307036548136965, 827240261886336764179, 39346708467688595378892, 1978419655660313589123981
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 28 2018

Keywords

Crossrefs

Programs

  • Magma
    [&+[DivisorSigma(n, d):d in Divisors(n)]:n in [1..20]]; // Vincenzo Librandi, Feb 16 2020
  • Maple
    with(numtheory): seq(coeff(series(add(sigma[n](k)*x^k/(1-x^k),k=1..n),x,n+1), x, n), n = 1 .. 20); # Muniru A Asiru, Oct 28 2018
  • Mathematica
    Table[Sum[DivisorSigma[n, d], {d, Divisors[n]}] , {n, 19}]
    Table[SeriesCoefficient[Sum[DivisorSigma[n, k] x^k/(1 - x^k), {k, 1, n}], {x, 0, n}], {n, 19}]
  • PARI
    a(n) = sumdiv(n, d, sigma(d, n)); \\ Michel Marcus, Oct 28 2018
    
  • Python
    from sympy import divisor_sigma, divisors
    def A321141(n):
        return sum(divisor_sigma(d,0)*(n//d)**n for d in divisors(n,generator=True)) # Chai Wah Wu, Feb 15 2020
    

Formula

a(n) = [x^n] Sum_{k>=1} sigma_n(k)*x^k/(1 - x^k).
a(n) = Sum_{d|n} d^n*tau(n/d).
a(n) ~ n^n. - Vaclav Kotesovec, Feb 16 2020

A082245 Sum of (n-1)-th powers of divisors of n.

Original entry on oeis.org

1, 3, 10, 73, 626, 8052, 117650, 2113665, 43053283, 1001953638, 25937424602, 743375541244, 23298085122482, 793811662272744, 29192932133689220, 1152956690052710401, 48661191875666868482, 2185928253847184914509
Offset: 1

Views

Author

Reinhard Zumkeller, May 22 2003

Keywords

Comments

a(n) = t(n,n-1), t as defined in A082771;
a(1)=A000005(1), a(2)=A000203(2), a(3)=A001157(3), a(4)=A001158(4), a(5)=A001159(5), a(6)=A001160(6), a(7)=A013954(7), a(8)=A013955(8).

Examples

			a(6) = 1^5 + 2^5 + 3^5 + 6^5 = 1 + 32 + 243 + 7776 = 8052.
		

Crossrefs

Programs

  • Magma
    [DivisorSigma(n-1, n): n in [1..20]]; // G. C. Greubel, Nov 02 2018
  • Mathematica
    Table[Total[Divisors[n]^(n-1)], {n,18}] (* T. D. Noe, Oct 25 2006 *)
    Table[DivisorSigma[n-1,n], {n,1,20}] (* G. C. Greubel, Nov 02 2018 *)
  • PARI
    a(n) = sigma(n, n-1); \\ Michel Marcus, Nov 07 2017
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k*x)^k)^(1/k^2))))) \\ Seiichi Manyama, Jun 23 2019
    
  • Sage
    [sigma(n,(n-1))for n in range(1,19)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: Sum_{k>=1} k^(k-1)*x^k/(1 - (k*x)^k). - Ilya Gutkovskiy, Nov 02 2018
L.g.f.: -log(Product_{k>=1} (1 - (k*x)^k)^(1/k^2)) = Sum_{k>=1} a(k)*x^k/k. - Seiichi Manyama, Jun 23 2019
Limit_{n->oo} a(n)/A023887(n-1) = e (A001113) (Sugunamma, 1960). - Amiram Eldar, Apr 15 2021

Extensions

Corrected by T. D. Noe, Oct 25 2006

A338661 a(n) = Sum_{d|n} d^n * binomial(d+n/d-2, d-1).

Original entry on oeis.org

1, 5, 28, 289, 3126, 49036, 823544, 17040385, 387538588, 10048833246, 285311670612, 8929334253419, 302875106592254, 11116754387182648, 437894348359764856, 18448995959423107073, 827240261886336764178, 39347761059781438793815, 1978419655660313589123980
Offset: 1

Views

Author

Seiichi Manyama, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^n * Binomial[# + n/# - 2, #-1] &]; Array[a, 20] (* Amiram Eldar, Apr 22 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^n*binomial(d+n/d-2, d-1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x/(1-(k*x)^k))^k))

Formula

G.f.: Sum_{k >= 1} (k * x/(1 - (k * x)^k))^k.
If p is prime, a(p) = 1 + p^p.
a(n) ~ n^n. - Vaclav Kotesovec, Aug 04 2025

A343573 a(n) = Sum_{d|n} d^d * binomial(d+n/d-2, d-1).

Original entry on oeis.org

1, 5, 28, 265, 3126, 46750, 823544, 16778257, 387420652, 10000015646, 285311670612, 8916100731047, 302875106592254, 11112006831322846, 437893890380906656, 18446744073843774497, 827240261886336764178, 39346408075300025340205
Offset: 1

Views

Author

Seiichi Manyama, Apr 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^#*Binomial[# + n/# - 2, # - 1] &]; Array[a, 20] (* Amiram Eldar, Apr 20 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^d*binomial(d+n/d-2, d-1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x/(1-x^k))^k))

Formula

G.f.: Sum_{k >= 1} (k * x/(1 - x^k))^k.
If p is prime, a(p) = 1 + p^p.
Showing 1-10 of 58 results. Next