cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A109976 Diagonal sums of number triangle A109974.

Original entry on oeis.org

1, 2, 3, 6, 7, 16, 19, 46, 66, 159, 274, 667, 1320, 3263, 7156, 18084, 42794, 111018, 278752, 743889, 1959482, 5383395, 14761634, 41740307, 118517301, 344580865, 1009349749, 3013665637, 9081346743, 27808754039, 86015003997, 269796018547
Offset: 0

Views

Author

Paul Barry, Jul 06 2005

Keywords

Crossrefs

Programs

  • Maple
    f:= n -> add(numtheory:-sigma[k](n-2*k+1),k=0..n/2):
    map(f, [$0..50]); # Robert Israel, May 25 2018
  • Mathematica
    Array[Sum[DivisorSigma[k, (# - 2 k + 1)], {k, 0, Floor[#/2]}] &, 32, 0] (* Michael De Vlieger, May 27 2018 *)

Formula

a(n) = Sum_{k=0..floor(n/2)} sigma_k(n-2k+1). - Corrected by Robert Israel, May 25 2018
G.f.: Sum_{n>=1} x^(n-1)/((1-x^n)*(1-n*x^2)). - Robert Israel, May 27 2018

A109977 Inverse of number-theoretic triangle A109974.

Original entry on oeis.org

1, -2, 1, 4, -3, 1, -15, 11, -5, 1, 107, -76, 35, -9, 1, -1475, 1041, -476, 125, -17, 1, 40914, -28858, 13177, -3460, 479, -33, 1, -2327019, 1641270, -749336, 196731, -27260, 1901, -65, 1, 271813931, -191712888, 87527566, -22979242, 3184213, -222196, 7655, -129, 1, -64930439315, 45796039830
Offset: 0

Views

Author

Paul Barry, Jul 06 2005

Keywords

Examples

			Rows begin
1;
-2,1;
4,-3,1;
-15,11,-5,1;
107,-76,35,-9,1;
-1475,1041,-476,125,-17,1;
		

A109978 Inverse binomial transform of number-theoretic triangle A109974.

Original entry on oeis.org

1, 1, 1, -1, 1, 1, 2, -2, 2, 1, -5, 5, -4, 5, 1, 13, -14, 11, -7, 12, 1, -33, 40, -35, 20, -5, 27, 1, 80, -111, 113, -77, 21, 34, 58, 1, -184, 293, -350, 294, -144, -27, 238, 121, 1, 402, -731, 1021, -1042, 716, -249, -153, 1063, 248, 1, -840, 1726, -2796, 3409, -2982, 1755, -724, 318, 4037, 503, 1
Offset: 1

Views

Author

Paul Barry, Jul 06 2005

Keywords

Comments

First column is expansion of bracket function A001659.

Examples

			Rows begin
1;
1,1;
-1,1,1;
2,-2,2,1;
-5,5,-4,5,1;
13,-14,11,-7,12,1;
-33,40,-35,20,-5,27,1;
		

Formula

T(n, k)=sum{j=1..n, (-1)^(n-j)C(n-1, j-1)*if(k<=j, sigma(k-1, j-k+1), 0)} [offset (1, 1)]

A023887 a(n) = sigma_n(n): sum of n-th powers of divisors of n.

Original entry on oeis.org

1, 5, 28, 273, 3126, 47450, 823544, 16843009, 387440173, 10009766650, 285311670612, 8918294543346, 302875106592254, 11112685048647250, 437893920912786408, 18447025552981295105, 827240261886336764178, 39346558271492178925595, 1978419655660313589123980
Offset: 1

Views

Author

Keywords

Comments

Logarithmic derivative of A023881.
Compare to A217872(n) = sigma(n)^n.

Examples

			The divisors of 6 are 1, 2, 3 and 6, so a(6) = 1^6 + 2^6 + 3^6 + 6^6 = 47450.
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.

Crossrefs

Programs

Formula

G.f.: Sum_{n>0} (n*x)^n/(1-(n*x)^n). - Vladeta Jovovic, Oct 27 2002
From Nick Hobson, Nov 25 2006: (Start)
If the canonical prime factorization of n > 1 is the product of p^e(p) then sigma_n(n) = Product_p ((p^(n*(e(p)+1)))-1)/(p^n-1).
sigma_n(n) is odd if and only if n is a square or twice a square. (End)
Conjecture: sigma_m(n) = sigma(n^m * rad(n)^(m-1))/sigma(rad(n)^(m-1)) for n > 0 and m > 0, where sigma = A000203 and rad = A007947. - Velin Yanev, Aug 24 2017
a(n) ~ n^n. - Vaclav Kotesovec, Nov 02 2018
Sum_{n>=1} 1/a(n) = A199858. - Amiram Eldar, Nov 19 2020

Extensions

Edited by N. J. A. Sloane, Nov 25 2006

A322083 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} (-1)^(n/d+d)*d^k.

Original entry on oeis.org

1, 1, -2, 1, -3, 2, 1, -5, 4, -1, 1, -9, 10, -3, 2, 1, -17, 28, -13, 6, -4, 1, -33, 82, -57, 26, -12, 2, 1, -65, 244, -241, 126, -50, 8, 0, 1, -129, 730, -993, 626, -252, 50, -3, 3, 1, -257, 2188, -4033, 3126, -1394, 344, -45, 13, -4, 1, -513, 6562, -16257, 15626, -8052, 2402, -441, 91, -18, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2018

Keywords

Comments

For each k, the k-th column sequence (T(n,k))(n>=1) is a multiplicative function of n, equal to (-1)^(n+1)*(Id_k * 1) in the notation of the Bala link. - Peter Bala, Mar 19 2022

Examples

			Square array begins:
   1,   1,   1,    1,     1,     1,  ...
  -2,  -3,  -5,   -9,   -17,   -33,  ...
   2,   4,  10,   28,    82,   244,  ...
  -1,  -3, -13,  -57,  -241,  -993,  ...
   2,   6,  26,  126,   626,  3126,  ...
  -4, -12, -50, -252, -1394, -8052,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, Sum[(-1)^(n/d+d) d^k, {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[(-1)^(j + 1) j^k x^j/(1 + x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    f[p_, e_, k_] := If[k == 0, e + 1, (p^(k*e + k) - 1)/(p^k - 1)]; f[2, e_, k_] := If[k == 0, e - 3, -((2^(k - 1) - 1)*2^(k*e + 1) + 2^(k + 1) - 1)/(2^k - 1)]; T[1, k_] = 1; T[n_, k_] := Times @@ (f[First[#], Last[#], k] & /@ FactorInteger[n]); Table[T[n - k, k], {n, 1, 11}, {k, n - 1, 0, -1}] // Flatten (* Amiram Eldar, Nov 22 2022 *)
  • PARI
    T(n,k)={sumdiv(n, d, (-1)^(n/d+d)*d^k)}
    for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018

Formula

G.f. of column k: Sum_{j>=1} (-1)^(j+1)*j^k*x^j/(1 + x^j).

A285425 Square array A(n,k), n>=1, k>=0, read by antidiagonals, where column k is the expansion of Sum_{j>=1} (2*j - 1)^k*x^(2*j-1)/(1 - x^(2*j-1)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 10, 1, 2, 1, 1, 28, 1, 6, 2, 1, 1, 82, 1, 26, 4, 2, 1, 1, 244, 1, 126, 10, 8, 1, 1, 1, 730, 1, 626, 28, 50, 1, 3, 1, 1, 2188, 1, 3126, 82, 344, 1, 13, 2, 1, 1, 6562, 1, 15626, 244, 2402, 1, 91, 6, 2, 1, 1, 19684, 1, 78126, 730, 16808, 1, 757, 26, 12, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, May 14 2017

Keywords

Comments

A(n,k) is the sum of k-th powers of odd divisors of n.

Examples

			Square array begins:
1,  1,   1,    1,    1,     1,  ...
1,  1,   1,    1,    1,     1,  ...
2,  4,  10,   28,   82,   244,  ...
1,  1,   1,    1,    1,     1,  ...
2,  6,  26,  126,  626,  3126,  ...
2,  4,  10,   28,   82,   244,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[(2 i - 1)^k x^(2 i - 1)/(1 - x^(2 i - 1)), {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 12}, {n, 1, j}] // Flatten

Formula

G.f. of column k: Sum_{j>=1} (2*j - 1)^k*x^(2*j-1)/(1 - x^(2*j-1)).

Extensions

Offset changed by Ilya Gutkovskiy, Oct 25 2018

A279394 Triangle read by rows, T(n,m) = sigma_{n-m}(m) for n >= 1, m = 1,2, ..., n.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 5, 4, 3, 1, 9, 10, 7, 2, 1, 17, 28, 21, 6, 4, 1, 33, 82, 73, 26, 12, 2, 1, 65, 244, 273, 126, 50, 8, 4, 1, 129, 730, 1057, 626, 252, 50, 15, 3, 1, 257, 2188, 4161, 3126, 1394, 344, 85, 13, 4, 1, 513, 6562, 16513, 15626, 8052, 2402, 585, 91, 18, 2, 1, 1025, 19684, 65793, 78126, 47450, 16808, 4369, 757, 130, 12, 6
Offset: 1

Views

Author

Wolfdieter Lang, Jan 07 2017

Keywords

Comments

See A109974 (downward antidiagonals) for details and references. sigma_k(n) is the sum of the k-th power of the positive divisors of n.
This is the triangle read by rows obtained from the array sigma_k(n) for k >= 0, n >= 1, read by upward antidiagonals.
The row sums are A108639.

Examples

			The triangle T(n, m) begins:
n\m 1   2    3    4    5    6   7  8  9 10
1:  1
2:  1   2
3:  1   3    2
4:  1   5    4    3
5:  1   9   10    7    2
6:  1  17   28   21    6    4
7:  1  33   82   73   26   12   2
8:  1  65  244  273  126   50   8  4
9:  1 129  730 1057  626  252  50 15  3
10: 1 257 2188 4161 3126 1394 344 85 13  4
...
n = 11: 1 513 6562 16513 15626 8052 2402 585 91 18 2,
n = 12: 1 1025 19684 65793 78126 47450 16808 4369 757 130 12 6.
...
		

Crossrefs

Programs

  • Maple
    T := (n, k) -> numtheory:-sigma[n-k](k):
    seq(seq(T(n,k), k=1..n), n=1..12); # Peter Luschny, Jan 07 2017
  • Mathematica
    Table[DivisorSigma[k, #] &[n - k + 1], {n, 0, 11}, {k, n, 0, -1}] (* Michael De Vlieger, Jan 09 2017 *)

Formula

T(n, m) = sigma_{n-m}(m), n >= 1, m = 1..n.

A225816 Square array A(n,k) = (k!)^n, n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 4, 1, 1, 1, 24, 36, 8, 1, 1, 1, 120, 576, 216, 16, 1, 1, 1, 720, 14400, 13824, 1296, 32, 1, 1, 1, 5040, 518400, 1728000, 331776, 7776, 64, 1, 1, 1, 40320, 25401600, 373248000, 207360000, 7962624, 46656, 128, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 29 2013

Keywords

Comments

A(n,k) is the determinant of the k X k matrix M = [Stirling2(n+i,j)] for 1<=i,j<=k. A(2,3) = det([1,3,1; 1,7,6; 1,15,25]) = 36.
A(n,k) is the determinant of the symmetric k X k matrix M = [sigma_n(gcd(i,j))] for 1<=i,j<=k. A(2,3) = det([1,1,1; 1,5,1; 1,1,10]) = 36.
A(n,k) is (-1)^(n*k) times the determinant of the n X n matrix M = [Stirling1(k+i,j)] for 1<=i,j<=n. A(2,3) = (-1)^(2+3) * det([-6,11; 24,-50]) = 36.
A(n,k) is the number of lattice paths from {n}^k to {0}^k using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_k) we have abs(p_i-p_j) <= 1 for 1<=i,j<=k. A(2,3) = 36:
(1,2,2)-(1,1,2) (0,1,1)-(0,0,1)
/ X \ / X \
(2,2,2)-(2,1,2) (1,2,1)-(1,1,1)-(1,0,1) (0,1,0)-(0,0,0).
\ X / \ X /
(2,2,1) (2,1,1) (1,1,0) (1,0,0)
A(n,k) is the number of set partitions of [k*(n+1)] into k blocks of size n+1 such that the elements of each block are distinct mod n+1. A(2,3) = 36: 123|456|789, 126|345|789, ..., 189|234|567, 189|246|357.

Examples

			Square array A(n,k) begins:
  1, 1,  1,    1,       1,           1, ...
  1, 1,  2,    6,      24,         120, ...
  1, 1,  4,   36,     576,       14400, ...
  1, 1,  8,  216,   13824,     1728000, ...
  1, 1, 16, 1296,  331776,   207360000, ...
  1, 1, 32, 7776, 7962624, 24883200000, ...
		

Crossrefs

Columns k=0+1, 2-4 give: A000012, A000079, A000400, A009968.
Rows n=0-4 give: A000012, A000142, A001044, A000442, A134375.
Main diagonal gives: A036740.

Programs

  • Maple
    A:= (n, k)-> k!^n:
    seq(seq(A(n,d-n), n=0..d), d=0..12);

Formula

A(n,k) = (k!)^n.
A(n,k) = k^n * A(n,k-1) for k>0, A(n,0) = 1.
A(n,k) = k! * A(n-1,k) for n>0, A(0,k) = 1.
G.f. of column k: 1/(1-k!*x).

A322143 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n, d==1 (mod 4)} d^k - Sum_{d|n, d==3 (mod 4)} d^k.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, -2, 1, 1, 1, -8, 1, 2, 1, 1, -26, 1, 6, 0, 1, 1, -80, 1, 26, -2, 0, 1, 1, -242, 1, 126, -8, -6, 1, 1, 1, -728, 1, 626, -26, -48, 1, 1, 1, 1, -2186, 1, 3126, -80, -342, 1, 7, 2, 1, 1, -6560, 1, 15626, -242, -2400, 1, 73, 6, 0, 1, 1, -19682, 1, 78126, -728, -16806, 1, 703, 26, -10, 0
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 28 2018

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,    1,     1,  ...
  1,  1,   1,    1,    1,     1,  ...
  0, -2,  -8,  -26,  -80,  -242,  ...
  1,  1,   1,    1,    1,     1,  ...
  2,  6,  26,  126,  626,  3126,  ...
  0, -2,  -8,  -26,  -80,  -242,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[(-1)^(j - 1) (2 j - 1)^k x^(2 j - 1)/(1 - x^(2 j - 1)), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten

Formula

G.f. of column k: Sum_{j>=1} (-1)^(j-1)*(2*j - 1)^k*x^(2*j-1)/(1 - x^(2*j-1)).

A286880 Square array A(n,k), n>=0, k>=1, read by antidiagonals, where row n is the sum of n-th powers of unitary divisors of k (divisors d such that gcd(d, k/d) = 1).

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 2, 4, 5, 1, 2, 5, 10, 9, 1, 4, 6, 17, 28, 17, 1, 2, 12, 26, 65, 82, 33, 1, 2, 8, 50, 126, 257, 244, 65, 1, 2, 9, 50, 252, 626, 1025, 730, 129, 1, 4, 10, 65, 344, 1394, 3126, 4097, 2188, 257, 1, 2, 18, 82, 513, 2402, 8052, 15626, 16385, 6562, 513, 1, 4, 12, 130, 730, 4097, 16808, 47450, 78126, 65537, 19684, 1025, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 02 2017

Keywords

Comments

For row r > 0, Sum_{k=1..n} A(r,k) ~ zeta(r+1) * n^(r+1) / ((r+1) * zeta(r+2)). - Vaclav Kotesovec, May 20 2021

Examples

			Square array begins:
1,   2,    2,     2,     2,     4,  ...
1,   3,    4,     5,     6,    12,  ...
1,   5,   10,    17,    26,    50,  ...
1,   9,   28,    65,   126,   252,  ...
1,  17,   82,   257,   626,  1394,  ...
1,  33,  244,  1025,  3126,  8052,  ...
		

Crossrefs

Formula

Dirichlet g.f. of row n: zeta(s)*zeta(s-n)/zeta(2*s-n).
Showing 1-10 of 27 results. Next