cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A343573 a(n) = Sum_{d|n} d^d * binomial(d+n/d-2, d-1).

Original entry on oeis.org

1, 5, 28, 265, 3126, 46750, 823544, 16778257, 387420652, 10000015646, 285311670612, 8916100731047, 302875106592254, 11112006831322846, 437893890380906656, 18446744073843774497, 827240261886336764178, 39346408075300025340205
Offset: 1

Views

Author

Seiichi Manyama, Apr 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^#*Binomial[# + n/# - 2, # - 1] &]; Array[a, 20] (* Amiram Eldar, Apr 20 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^d*binomial(d+n/d-2, d-1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x/(1-x^k))^k))

Formula

G.f.: Sum_{k >= 1} (k * x/(1 - x^k))^k.
If p is prime, a(p) = 1 + p^p.

A339481 a(n) = Sum_{d|n} d^(n-d) * binomial(d+n/d-2, d-1).

Original entry on oeis.org

1, 2, 2, 10, 2, 131, 2, 1282, 4376, 16907, 2, 1138272, 2, 5793475, 154455992, 469893122, 2, 49501130330, 2, 1318441711177, 19001093813466, 3138439911059, 2, 15989399214596398, 6675720214843752, 3937376603803099, 6754271297694102092, 47097064577536888014, 2
Offset: 1

Views

Author

Seiichi Manyama, Apr 24 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(n - #) * Binomial[# + n/# - 2, # - 1] &]; Array[a, 30] (* Amiram Eldar, Apr 25 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^(n-d)*binomial(d+n/d-2, d-1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (x/(1-(k*x)^k))^k))

Formula

G.f.: Sum_{k >= 1} (x/(1 - (k * x)^k))^k.
If p is prime, a(p) = 2.

A339712 a(n) = Sum_{d|n} d^(d+n/d-1) * binomial(d+n/d-2, d-1).

Original entry on oeis.org

1, 5, 28, 273, 3126, 46948, 823544, 16781441, 387421948, 10000078446, 285311670612, 8916102176891, 302875106592254, 11112006865913416, 437893890382064056, 18446744074783625217, 827240261886336764178, 39346408075327954053967, 1978419655660313589123980
Offset: 1

Views

Author

Seiichi Manyama, Apr 24 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(# + n/# - 1) * Binomial[# + n/# - 2, # - 1] &]; Array[a, 20] (* Amiram Eldar, Apr 25 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^(d+n/d-1)*binomial(d+n/d-2, d-1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x/(1-k*x^k))^k))

Formula

G.f.: Sum_{k >= 1} (k * x/(1 - k * x^k))^k.
If p is prime, a(p) = 1 + p^p.

A339482 a(n) = Sum_{d|n} d^(n-d+1) * binomial(d+n/d-2, d-1).

Original entry on oeis.org

1, 3, 4, 21, 6, 346, 8, 4617, 13132, 80696, 12, 4903847, 14, 40410966, 756336736, 2416181265, 18, 306560794753, 20, 6941876836216, 132964265599502, 34522735212626, 24, 116720277621236637, 33378601074218776, 51185893450298400, 60788365423272068968
Offset: 1

Views

Author

Seiichi Manyama, Apr 24 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(n - # + 1) * Binomial[# + n/# - 2, # - 1] &]; Array[a, 30] (* Amiram Eldar, Apr 25 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^(n-d+1)*binomial(d+n/d-2, d-1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, k*(x/(1-(k*x)^k))^k))

Formula

G.f.: Sum_{k >= 1} k * (x/(1 - (k * x)^k))^k.
If p is prime, a(p) = 1 + p.

A338689 a(n) = Sum_{d|n} (-1)^(d-1) * (n/d)^n * binomial(d+n/d-2, d-1).

Original entry on oeis.org

1, 3, 28, 223, 3126, 44660, 823544, 16514047, 387538588, 9951176994, 285311670612, 8903202187413, 302875106592254, 11107259264162760, 437894348359764856, 18444492187995996159, 827240261886336764178, 39345059356329821149097
Offset: 1

Views

Author

Seiichi Manyama, Apr 24 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(# - 1) * (n/#)^n * Binomial[# + n/# - 2, # - 1] &]; Array[a, 20] (* Amiram Eldar, Apr 24 2021 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(d-1)*(n/d)^n*binomial(d+n/d-2, d-1));
    
  • PARI
    N=20; x='x+O('x^N); Vec(sum(k=1, N, (k*x/(1+(k*x)^k))^k))

Formula

G.f.: Sum_{k>=1} (k * x/(1 + (k * x)^k))^k.
If p is prime, a(p) = (-1)^(p-1) + p^p.

A360832 Expansion of Sum_{k>=0} ( k * x / (1 - (k * x)^2) )^k.

Original entry on oeis.org

1, 1, 4, 28, 288, 3855, 63232, 1227291, 27511296, 699389444, 19880700928, 624817997477, 21512488648704, 805233062024021, 32556682898653184, 1413981749074790444, 65652661019642560512, 3245240681196968168619, 170146759140135777861632
Offset: 0

Views

Author

Seiichi Manyama, Feb 22 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x/(1-(k*x)^2))^k))
    
  • PARI
    a(n) = sum(k=0, n\2, (n-2*k)^n*binomial(n-k-1, k));

Formula

a(n) = Sum_{k=0..floor(n/2)} (n-2*k)^n * binomial(n-k-1,k).

A360833 Expansion of Sum_{k>=0} ( k * x / (1 - (k * x)^3) )^k.

Original entry on oeis.org

1, 1, 4, 27, 257, 3189, 48843, 889080, 18731109, 448004763, 11987812504, 354763577414, 11503684020051, 405589341060930, 15447798292502206, 632069580794524857, 27649951709582591394, 1287748889361331630661, 63616184683123273364961
Offset: 0

Views

Author

Seiichi Manyama, Feb 22 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x/(1-(k*x)^3))^k))
    
  • PARI
    a(n) = sum(k=0, n\3, (n-3*k)^n*binomial(n-2*k-1, k));

Formula

a(n) = Sum_{k=0..floor(n/3)} (n-3*k)^n * binomial(n-2*k-1,k).

A360831 Expansion of Sum_{k>0} (k * x)^k / (1 - (k * x)^k)^(k+1).

Original entry on oeis.org

1, 6, 30, 308, 3130, 49962, 823550, 17107464, 387617328, 10058609120, 285311670622, 8931600297696, 302875106592266, 11117432610599574, 437894531752211760, 18449277498826162192, 827240261886336764194, 39347911865350001626164
Offset: 1

Views

Author

Seiichi Manyama, Feb 22 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^n * Binomial[# + n/# - 1, #] &]; Array[a, 20] (* Amiram Eldar, Jul 31 2023 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x)^k/(1-(k*x)^k)^(k+1)))
    
  • PARI
    a(n) = sumdiv(n, d, d^n*binomial(d+n/d-1, d));

Formula

a(n) = Sum_{d|n} d^n * binomial(d+n/d-1,d).
If p is prime, a(p) = p + p^p.
Showing 1-8 of 8 results.