cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A338684 a(n) = Sum_{d|n} (-1)^(d-1) * (n/d)^n * binomial(d+n/d-1, d).

Original entry on oeis.org

1, 7, 82, 975, 15626, 275817, 5764802, 133561087, 3486981232, 99853521768, 3138428376722, 106947820494048, 3937376385699290, 155549105311903523, 6568409424129452048, 295137771929866797055, 14063084452067724991010, 708228596784096039676230, 37589973457545958193355602
Offset: 1

Views

Author

Seiichi Manyama, Apr 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(# - 1) * (n/#)^n * Binomial[# + n/# - 1, #] &]; Array[a, 20] (* Amiram Eldar, Apr 24 2021 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(d-1)*(n/d)^n*binomial(d+n/d-1, d));
    
  • PARI
    N=20; x='x+O('x^N); Vec(sum(k=1, N, 1-1/(1+(k*x)^k)^k))

Formula

G.f.: Sum_{k >= 1} (1 - 1/(1 + (k * x)^k)^k).
If p is prime, a(p) = (-1)^(p-1) + p^(p+1).

A338688 a(n) = - Sum_{d|n} (-n/d)^d * binomial(d+n/d-2, d-1).

Original entry on oeis.org

1, 1, 4, -5, 6, 2, 8, -121, 172, 44, 12, -759, 14, 566, 5536, -7665, 18, -6877, 20, 2744, 70862, 21218, 24, -570573, 218776, 104324, 918568, 942479, 30, -3693495, 32, -9408481, 11779582, 2223344, 19935756, -15628120, 38, 9954650, 145283360, -371959011, 42, -382916059
Offset: 1

Views

Author

Seiichi Manyama, Apr 24 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := -DivisorSum[n, (-n/#)^# * Binomial[# + n/# - 2, # - 1] &]; Array[a, 40] (* Amiram Eldar, Apr 24 2021 *)
  • PARI
    a(n) = -sumdiv(n, d, (-n/d)^d*binomial(d+n/d-2, d-1));
    
  • PARI
    N=66; x='x+O('x^N); Vec(sum(k=1, N, k*(x/(1+k*x^k))^k))

Formula

G.f.: Sum_{k>=1} k * (x/(1 + k * x^k))^k.
If p is prime, a(p) = (-1)^(p-1) + p.
Showing 1-2 of 2 results.