cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A338661 a(n) = Sum_{d|n} d^n * binomial(d+n/d-2, d-1).

Original entry on oeis.org

1, 5, 28, 289, 3126, 49036, 823544, 17040385, 387538588, 10048833246, 285311670612, 8929334253419, 302875106592254, 11116754387182648, 437894348359764856, 18448995959423107073, 827240261886336764178, 39347761059781438793815, 1978419655660313589123980
Offset: 1

Views

Author

Seiichi Manyama, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^n * Binomial[# + n/# - 2, #-1] &]; Array[a, 20] (* Amiram Eldar, Apr 22 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^n*binomial(d+n/d-2, d-1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x/(1-(k*x)^k))^k))

Formula

G.f.: Sum_{k >= 1} (k * x/(1 - (k * x)^k))^k.
If p is prime, a(p) = 1 + p^p.
a(n) ~ n^n. - Vaclav Kotesovec, Aug 04 2025

A343573 a(n) = Sum_{d|n} d^d * binomial(d+n/d-2, d-1).

Original entry on oeis.org

1, 5, 28, 265, 3126, 46750, 823544, 16778257, 387420652, 10000015646, 285311670612, 8916100731047, 302875106592254, 11112006831322846, 437893890380906656, 18446744073843774497, 827240261886336764178, 39346408075300025340205
Offset: 1

Views

Author

Seiichi Manyama, Apr 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^#*Binomial[# + n/# - 2, # - 1] &]; Array[a, 20] (* Amiram Eldar, Apr 20 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^d*binomial(d+n/d-2, d-1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x/(1-x^k))^k))

Formula

G.f.: Sum_{k >= 1} (k * x/(1 - x^k))^k.
If p is prime, a(p) = 1 + p^p.

A339712 a(n) = Sum_{d|n} d^(d+n/d-1) * binomial(d+n/d-2, d-1).

Original entry on oeis.org

1, 5, 28, 273, 3126, 46948, 823544, 16781441, 387421948, 10000078446, 285311670612, 8916102176891, 302875106592254, 11112006865913416, 437893890382064056, 18446744074783625217, 827240261886336764178, 39346408075327954053967, 1978419655660313589123980
Offset: 1

Views

Author

Seiichi Manyama, Apr 24 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(# + n/# - 1) * Binomial[# + n/# - 2, # - 1] &]; Array[a, 20] (* Amiram Eldar, Apr 25 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^(d+n/d-1)*binomial(d+n/d-2, d-1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x/(1-k*x^k))^k))

Formula

G.f.: Sum_{k >= 1} (k * x/(1 - k * x^k))^k.
If p is prime, a(p) = 1 + p^p.

A339482 a(n) = Sum_{d|n} d^(n-d+1) * binomial(d+n/d-2, d-1).

Original entry on oeis.org

1, 3, 4, 21, 6, 346, 8, 4617, 13132, 80696, 12, 4903847, 14, 40410966, 756336736, 2416181265, 18, 306560794753, 20, 6941876836216, 132964265599502, 34522735212626, 24, 116720277621236637, 33378601074218776, 51185893450298400, 60788365423272068968
Offset: 1

Views

Author

Seiichi Manyama, Apr 24 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(n - # + 1) * Binomial[# + n/# - 2, # - 1] &]; Array[a, 30] (* Amiram Eldar, Apr 25 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^(n-d+1)*binomial(d+n/d-2, d-1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, k*(x/(1-(k*x)^k))^k))

Formula

G.f.: Sum_{k >= 1} k * (x/(1 - (k * x)^k))^k.
If p is prime, a(p) = 1 + p.

A360795 Expansion of Sum_{k>0} x^k / (1 - (k * x)^k)^(k+1).

Original entry on oeis.org

1, 3, 4, 17, 6, 211, 8, 1929, 7300, 22601, 12, 1724809, 14, 6703047, 223678576, 738787345, 18, 65630598229, 20, 2119646503661, 24448573943662, 3423809253371, 24, 21453113652593665, 12016296386718776, 4240253019018225, 8255251542208471048, 67251293544533119589, 30
Offset: 1

Views

Author

Seiichi Manyama, Feb 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(n-#) * Binomial[# + n/# - 1, #] &]; Array[a, 30] (* Amiram Eldar, Aug 02 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-(k*x)^k)^(k+1)))
    
  • PARI
    a(n) = sumdiv(n, d, d^(n-d)*binomial(d+n/d-1, d));

Formula

a(n) = Sum_{d|n} d^(n-d) * binomial(d+n/d-1,d).
If p is prime, a(p) = 1 + p.

A360802 Expansion of Sum_{k>0} (x / (1 - (2 * x)^k))^k.

Original entry on oeis.org

1, 3, 5, 17, 17, 105, 65, 449, 641, 1953, 1025, 16257, 4097, 37761, 93185, 247809, 65537, 1499649, 262145, 6596609, 8847361, 13654017, 4194305, 210026497, 90177537, 251764737, 833880065, 2659418113, 268435457, 18345328641, 1073741825, 53553922049, 75438751745
Offset: 1

Views

Author

Seiichi Manyama, Feb 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 2^(n-#) * Binomial[# + n/# - 2, # - 1] &]; Array[a, 30] (* Amiram Eldar, Aug 02 2023 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (x/(1-(2*x)^k))^k))
    
  • PARI
    a(n) = sumdiv(n, d, 2^(n-d)*binomial(d+n/d-2, d-1));

Formula

a(n) = Sum_{d|n} 2^(n-d) * binomial(d+n/d-2,d-1).
If p is prime, a(p) = 1 + 2^(p-1).

A360812 Expansion of Sum_{k>=0} ( x / (1 - (k * x)^2) )^k.

Original entry on oeis.org

1, 1, 1, 2, 9, 29, 113, 613, 3033, 17010, 110929, 713249, 5061097, 38762873, 302389553, 2544613578, 22404995001, 203762678941, 1960880744337, 19509713674397, 201306862742217, 2166901479447194, 24018963506471921, 275731857268608673, 3271769647891351705
Offset: 0

Views

Author

Seiichi Manyama, Feb 21 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (x/(1-(k*x)^2))^k))
    
  • PARI
    a(n) = sum(k=0, n\2, (n-2*k)^(2*k)*binomial(n-k-1, k));

Formula

a(n) = Sum_{k=0..floor(n/2)} (n-2*k)^(2*k) * binomial(n-k-1,k).

A360813 Expansion of Sum_{k>=0} ( x / (1 - (k * x)^3) )^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 17, 82, 258, 818, 5671, 43363, 240520, 1183168, 8547054, 77831681, 596258173, 4031934111, 33313129161, 338733239446, 3187239159511, 27197807726066, 260179611473044, 2918973182685904, 31820249821418229, 324099587971865989
Offset: 0

Views

Author

Seiichi Manyama, Feb 21 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (x/(1-(k*x)^3))^k))
    
  • PARI
    a(n) = sum(k=0, n\3, (n-3*k)^(3*k)*binomial(n-2*k-1, k));

Formula

a(n) = Sum_{k=0..floor(n/3)} (n-3*k)^(3*k) * binomial(n-2*k-1,k).
Showing 1-8 of 8 results.