cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A023887 a(n) = sigma_n(n): sum of n-th powers of divisors of n.

Original entry on oeis.org

1, 5, 28, 273, 3126, 47450, 823544, 16843009, 387440173, 10009766650, 285311670612, 8918294543346, 302875106592254, 11112685048647250, 437893920912786408, 18447025552981295105, 827240261886336764178, 39346558271492178925595, 1978419655660313589123980
Offset: 1

Views

Author

Keywords

Comments

Logarithmic derivative of A023881.
Compare to A217872(n) = sigma(n)^n.

Examples

			The divisors of 6 are 1, 2, 3 and 6, so a(6) = 1^6 + 2^6 + 3^6 + 6^6 = 47450.
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.

Crossrefs

Programs

Formula

G.f.: Sum_{n>0} (n*x)^n/(1-(n*x)^n). - Vladeta Jovovic, Oct 27 2002
From Nick Hobson, Nov 25 2006: (Start)
If the canonical prime factorization of n > 1 is the product of p^e(p) then sigma_n(n) = Product_p ((p^(n*(e(p)+1)))-1)/(p^n-1).
sigma_n(n) is odd if and only if n is a square or twice a square. (End)
Conjecture: sigma_m(n) = sigma(n^m * rad(n)^(m-1))/sigma(rad(n)^(m-1)) for n > 0 and m > 0, where sigma = A000203 and rad = A007947. - Velin Yanev, Aug 24 2017
a(n) ~ n^n. - Vaclav Kotesovec, Nov 02 2018
Sum_{n>=1} 1/a(n) = A199858. - Amiram Eldar, Nov 19 2020

Extensions

Edited by N. J. A. Sloane, Nov 25 2006

A156217 G.f.: A(x) = exp( Sum_{n>=1} sigma(n)^n*x^n/n ), a power series in x with integer coefficients.

Original entry on oeis.org

1, 1, 5, 26, 634, 2273, 502568, 821149, 323391480, 1514316108, 360153555251, 440146271717, 19353735645240631, 19423959923754863, 1599762850473552085, 35664862808194240282, 45517618403498070780338, 45844669861151626268272
Offset: 0

Views

Author

Paul D. Hanna, Feb 06 2009

Keywords

Comments

Logarithmic derivative yields A217872.
Compare to g.f. of partition numbers: exp( Sum_{n>=1} sigma(n)*x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n.

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 26*x^3 + 634*x^4 + 2273*x^5 + 502568*x^6 + ...
log(A(x)) = x + 3^2*x^2/2 + 4^3*x^3/3 + 7^4*x^4/4 + 6^5*x^5/5 + 12^6*x^6/6 + ...
		

Crossrefs

Programs

  • Maple
    A156217 := proc(n) option remember ; if n = 0 then 1; else add( (numtheory[sigma](k))^k*procname(n-k),k=1..n)/n ; fi; end: seq(A156217(n),n=0..10) ; # R. J. Mathar, Apr 02 2009
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,sigma(m)^m*x^m/m)+x*O(x^n)),n)}
    
  • PARI
    {a(n)=if(n==0,1,(1/n)*sum(k=1,n,sigma(k)^k*a(n-k)))}

Formula

a(n) = (1/n)*Sum_{k=1..n} sigma(k)^k * a(n-k) for n>0, with a(0)=1.

A236285 a(n) = tau(n)^sigma(n), where tau(n) = A000005(n) = the number of divisors of n and sigma(n) = A000203(n) = the sum of divisors of n.

Original entry on oeis.org

1, 8, 16, 2187, 64, 16777216, 256, 1073741824, 1594323, 68719476736, 4096, 6140942214464815497216, 16384, 281474976710656, 281474976710656, 4656612873077392578125, 262144, 2227915756473955677973140996096, 1048576, 481229803398374426442198455156736
Offset: 1

Views

Author

Jaroslav Krizek, Jan 21 2014

Keywords

Examples

			a(4) = tau(4)^sigma(4) = 3^7 = 2187.
		

Crossrefs

Cf. A000005 (tau(n)), A000203 (sigma(n)), A062758 (n^tau(n)), A217872 (sigma(n)^n), A236284 (tau(n)^n), A236286.

Programs

  • Mathematica
    Table[DivisorSigma[0, n]^DivisorSigma[1, n], {n, 1000}]
  • PARI
    s=[]; for(n=1, 20, s=concat(s, sigma(n, 0)^sigma(n))); s \\ Colin Barker, Jan 22 2014

Formula

a(n) = A000005(n)^A000203(n).

A236284 a(n) = tau(n)^n, where tau(n) = A000005(n) = the number of divisors of n.

Original entry on oeis.org

1, 4, 8, 81, 32, 4096, 128, 65536, 19683, 1048576, 2048, 2176782336, 8192, 268435456, 1073741824, 152587890625, 131072, 101559956668416, 524288, 3656158440062976, 4398046511104, 17592186044416, 8388608, 4722366482869645213696, 847288609443, 4503599627370496
Offset: 1

Views

Author

Jaroslav Krizek, Jan 21 2014

Keywords

Examples

			a(4) = tau(4)^4 = 3^4 = 81.
		

Crossrefs

Cf. A000005 (tau(n)), A062758 (n^tau(n)), A217872 (sigma(n)^n), A236285 (tau(n)^sigma(n)), A236286.

Programs

  • Mathematica
    Table[DivisorSigma[0, n]^n, {n, 1000}]
  • PARI
    s=[]; for(n=1, 30, s=concat(s, sigma(n, 0)^n)); s \\ Colin Barker, Jan 22 2014

Formula

a(n) = A000005(n)^n.

A236286 a(n) = tau(n)^sigma(n) / tau(n)^n, where tau(n) = A000005(n) = the number of divisors of n and sigma(n) = A000203(n) = the sum of divisors of n.

Original entry on oeis.org

1, 2, 2, 27, 2, 4096, 2, 16384, 81, 65536, 2, 2821109907456, 2, 1048576, 262144, 30517578125, 2, 21936950640377856, 2, 131621703842267136, 4194304, 268435456, 2, 324518553658426726783156020576256, 729, 4294967296, 67108864, 6140942214464815497216, 2
Offset: 1

Views

Author

Jaroslav Krizek, Jan 21 2014

Keywords

Comments

a(n) = tau(n)^sigma_p(n), where sigma_p(n) = A001065(n) = the sum of proper divisors of n.

Examples

			a(4) = tau(4)^sigma(4) / tau(4)^4 = 3^7 /3^4 = 27.
		

Crossrefs

Cf. A000005 (tau(n)), A000203 (sigma(n)), A001065 (sigma_p(n)), A062758 (n^tau(n)), A217872 (sigma(n)^n), A236284 (tau(n)^n), A236285 (tau(n)^sigma(n)).

Programs

  • Mathematica
    Table[DivisorSigma[0, n]^[DivisorSigma[1, n] - n], {n, 1000}]
  • PARI
    s=[]; for(n=1, 30, s=concat(s, sigma(n, 0)^sigma(n)/sigma(n, 0)^n)); s \\ Colin Barker, Jan 22 2014

Formula

a(n) = A236285(n) / A236284(n) = A000005(n)^A000203(n) / A000005(n)^n = A000005(n)^A001065(n).
a(p) = 2 for p = primes (A000040).

A300906 Numbers k such that sigma(k)^k divides k^sigma(k).

Original entry on oeis.org

1, 6, 28, 84, 120, 364, 420, 496, 672, 840, 1080, 1320, 1488, 1782, 2280, 2760, 3276, 3360, 3472, 3480, 3720, 3780, 5640, 7080, 7392, 7440, 7560, 8128, 8736, 9240, 9480, 10416, 10920, 11880, 12400, 15456, 15960, 16368, 16380, 17880, 18360, 18600, 19320, 20520
Offset: 1

Views

Author

Jaroslav Krizek, Mar 20 2018

Keywords

Comments

Numbers k such that A217872(k) divides A100879(k).
Numbers k such that A300905(k) = 0.
Corresponding quotients: 1, 729, 123476695691247935826229781856256, ...
m-perfect numbers k (A007691) are terms iff m divides k.

Examples

			6 is a term because 6^sigma(6) / sigma(6)^6 = 6^12 / 12^6 = 2176782336 / 2985984 = 729 (integer).
		

Crossrefs

Programs

  • GAP
    Filtered([1..30000],n->PowerModInt(n,Sigma(n),Sigma(n)^n)=0); # Muniru A Asiru, Mar 20 2018
    
  • Magma
    [n: n in[1..20000]  | n^SumOfDivisors(n) mod SumOfDivisors(n)^n eq 0];
    
  • Maple
    with(numtheory):
    select(n->n &^ sigma(n) mod sigma(n)^n =0, [`$`(1..30000)]); # Muniru A Asiru, Mar 20 2018
  • PARI
    isok(n) = my(s = sigma(n)); Mod(n, s^n)^s == 0; \\ Michel Marcus, Mar 23 2018

A158947 Inverse Euler transform of A156217.

Original entry on oeis.org

1, 4, 21, 598, 1555, 497652, 299593, 320361028, 1178277701, 357046721884, 67546215517, 19351522090518670, 61054982558011, 1502551437369035044, 33657152197069739919, 45463945109198918808616, 128583032925805678351
Offset: 1

Views

Author

Vladeta Jovovic, Mar 31 2009

Keywords

Crossrefs

Programs

  • Maple
    A158947 := proc(n) add(numtheory[sigma](d)^d*numtheory[mobius](n/d),d=numtheory[divisors](n))/n ; end: seq( A158947(n),n=1..40) ; # R. J. Mathar, Apr 02 2009
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(A156217):
    seq(a(n), n = 1..17); # Peter Luschny, Nov 21 2022
  • Mathematica
    f[n_] := Block[{d = Divisors@n}, Plus @@ (DivisorSigma[1, d]^d*MoebiusMu[n/d])/n]; Array[f, 17] (* Robert G. Wilson v, May 04 2009 *)

Formula

a(n) = (1/n)*Sum_{d|n} sigma(d)^d*moebius(n/d).

Extensions

Extended by R. J. Mathar, Apr 02 2009

A224440 a(n) = sigma(n)^(n-1).

Original entry on oeis.org

1, 3, 16, 343, 1296, 248832, 262144, 170859375, 815730721, 198359290368, 61917364224, 8293509467471872, 56693912375296, 876488338465357824, 21035720123168587776, 23465261991844685929951, 121439531096594251776, 1117116121846700839825703079, 262144000000000000000000
Offset: 1

Views

Author

Paul D. Hanna, Apr 06 2013

Keywords

Comments

Here sigma(n) = A000203(n) is the sum of the divisors of n.

Examples

			L.g.f.: L(x) = x + 3^1*x^2/2 + 4^2*x^3/3 + 7^3*x^4/4 + 6^4*x^5/5 + 12^5*x^6/6 +...
where exponentiation yields the g.f. of A224439:
exp(L(x)) = 1 + x + 2*x^2 + 7*x^3 + 93*x^4 + 357*x^5 + 41927*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=sigma(n)^(n-1)}
    for(n=1, 20, print1(a(n), ", "))

Formula

Logarithmic derivative of A224439.

Extensions

Offset corrected by Seiichi Manyama, Nov 10 2017

A236287 a(n) = sigma(n)^tau(n), where tau(n) = A000005(n) = the number of divisors of n and sigma(n) = A000203(n) = the sum of divisors of n.

Original entry on oeis.org

1, 9, 16, 343, 36, 20736, 64, 50625, 2197, 104976, 144, 481890304, 196, 331776, 331776, 28629151, 324, 3518743761, 400, 5489031744, 1048576, 1679616, 576, 167961600000000, 29791, 3111696, 2560000, 30840979456, 900, 722204136308736, 1024, 62523502209, 5308416
Offset: 1

Views

Author

Jaroslav Krizek, Jan 23 2014

Keywords

Examples

			a(4) = sigma(4)^tau(4) = 7^3 = 343.
		

Crossrefs

Cf. A000005 (tau(n)), A000203 (sigma(n)), A062758 (n^tau(n)), A217872 (sigma(n)^n), A236285 (tau(n)^sigma(n)), A236286.

Programs

  • Mathematica
    Table[DivisorSigma[1, n]^DivisorSigma[0, n], {n, 1000}]
  • PARI
    s=[]; for(n=1, 40, s=concat(s, sigma(n, 1)^sigma(n, 0))); s \\ Colin Barker, Jan 24 2014

Formula

a(n) = A000203(n)^A000005(n).

A236288 a(n) = sigma(n)^n / sigma(n)^tau(n), where tau(n) = A000005(n) = the number of divisors of n and sigma(n) = A000203(n) = the sum of divisors of n.

Original entry on oeis.org

1, 1, 4, 7, 216, 144, 32768, 50625, 4826809, 34012224, 5159780352, 481890304, 4049565169664, 63403380965376, 1521681143169024, 25408476896404831, 6746640616477458432, 12381557655576425121, 13107200000000000000000, 53148384174432398229504, 38685626227668133590597632
Offset: 1

Views

Author

Jaroslav Krizek, Jan 23 2014

Keywords

Comments

Conjecture: number 1 is the only number n such that sigma(n)^(n - tau(n)) = sigma(n+1)^(n + 1 - tau(n+1)).
Conjecture: number 1 is the only number n such that sigma(n)^(n - tau(n)) = sigma(k)^(k - tau(k)) has solution for distinct numbers n and k.

Examples

			a(4) = sigma(4)^(4 - tau(4)) = 7^(4 - 3) = 7.
		

Crossrefs

Cf. A000005 (tau(n)), A000203 (sigma(n)), A062758 (n^tau(n)), A217872 (sigma(n)^n), A236285 (tau(n)^sigma(n)), A236287 (sigma(n)^tau(n)).

Programs

  • Mathematica
    Table[DivisorSigma[1, n]^[n - DivisorSigma[0, n]], {n, 50}]
  • PARI
    s=[]; for(n=1, 30, s=concat(s, sigma(n, 1)^(n-sigma(n, 0)))); s \\ Colin Barker, Jan 24 2014

Formula

a(n) = sigma(n)^(n - tau(n)).
a(n) = A217872(n) / A236287(n) = A000203(n)^n / A000203(n)^A000005(n) = A000203(n)^A049820(n).
Showing 1-10 of 11 results. Next