cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A158952 Inverse Euler transform of the number of partitions in expanding space (A023881).

Original entry on oeis.org

1, 2, 9, 67, 625, 7903, 117649, 2105342, 43048905, 1000976352, 25937424601, 743191207969, 23298085122481, 793763217701693, 29192928060852217, 1152939097060278256, 48661191875666868481, 2185919903971766191000
Offset: 1

Views

Author

Paul D. Hanna, Mar 31 2009

Keywords

Examples

			Let G(x) = Sum_{n>=0} A023881(n)*x^n then
G(x) = 1 + x + 3*x^2 + 12*x^3 + 82*x^4 + 725*x^5 + 8811*x^6 +...
G(x) = 1/[(1-x)*(1-x^2)^2*(1-x^3)^9*(1-x^4)^67*(1-x^5)^625*...].
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[d, d]*MoebiusMu[n/d], {d, Divisors[n]}]/n, {n, 1, 20}] (* Vaclav Kotesovec, Oct 09 2019 *)
  • PARI
    {a(n)=(1/n)*sumdiv(n,d,sigma(d,d)*moebius(n/d))}

Formula

a(n) = (1/n)*Sum_{d|n} sigma(d,d)*moebius(n/d).
a(n) ~ n^(n-1). - Vaclav Kotesovec, Oct 09 2019
Showing 1-1 of 1 results.