A236288 a(n) = sigma(n)^n / sigma(n)^tau(n), where tau(n) = A000005(n) = the number of divisors of n and sigma(n) = A000203(n) = the sum of divisors of n.
1, 1, 4, 7, 216, 144, 32768, 50625, 4826809, 34012224, 5159780352, 481890304, 4049565169664, 63403380965376, 1521681143169024, 25408476896404831, 6746640616477458432, 12381557655576425121, 13107200000000000000000, 53148384174432398229504, 38685626227668133590597632
Offset: 1
Keywords
Examples
a(4) = sigma(4)^(4 - tau(4)) = 7^(4 - 3) = 7.
Links
- Jaroslav Krizek, Table of n, a(n) for n = 1..50
Crossrefs
Programs
-
Mathematica
Table[DivisorSigma[1, n]^[n - DivisorSigma[0, n]], {n, 50}]
-
PARI
s=[]; for(n=1, 30, s=concat(s, sigma(n, 1)^(n-sigma(n, 0)))); s \\ Colin Barker, Jan 24 2014
Comments