cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A318248 Expansion of Product_{k>=1} (1 + Fibonacci(k)*x^k).

Original entry on oeis.org

1, 1, 1, 3, 5, 10, 18, 35, 63, 123, 220, 411, 750, 1387, 2498, 4649, 8308, 15150, 27446, 49638, 88754, 161280, 287831, 516770, 924956, 1655166, 2944850, 5272056, 9348047, 16631195, 29569572, 52421323, 92665614, 164437988, 290243745, 512649342, 904774082
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 22 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1 + Fibonacci[k]*x^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j + 1]] += Fibonacci[k]*poly[[j - k + 1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly

Formula

From Vaclav Kotesovec, Aug 24 2018: (Start)
a(n) ~ c * A000045(n) * exp(r*sqrt(n)) / n^(3/4) ~ c * exp(r*sqrt(n)) * phi^n / (sqrt(5) * n^(3/4)), where r = 2*sqrt(-polylog(2, -1/sqrt(5))) = 1.273105657580344020952907652385896290122122879833..., c = 0.4521555113342405268628694407039776... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.
Equivalently, r = 2*sqrt(Pi^2/6 + log(5)^2/8 + polylog(2, -sqrt(5))). (End)

A300581 Expansion of Product_{k>=1} 1/(1 - 2^(k+1)*x^k).

Original entry on oeis.org

1, 4, 24, 112, 544, 2368, 10624, 44800, 190976, 791552, 3282944, 13414400, 54829056, 222117888, 899383296, 3625123840, 14601027584, 58659700736, 235555782656, 944552017920, 3786334535680, 15166305468416, 60736264994816, 243129089261568, 973133053952000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Product[1/(1-2^(k+1)*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 4^n, where c = A065446 = 1/QPochhammer(1/2) = 3.46274661945506361...

A306484 Expansion of Product_{k>=1} 1/(1 - Lucas(k)*x^k), where Lucas = A000204.

Original entry on oeis.org

1, 1, 4, 8, 24, 47, 129, 255, 641, 1308, 3064, 6225, 14286, 28792, 63571, 129240, 278329, 561044, 1190501, 2387695, 4987250, 9976529, 20536591, 40879937, 83416195, 165182927, 333581057, 658385847, 1318764282, 2590568669, 5154370637, 10082762399, 19929958391, 38848175389, 76331335061, 148233818041
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 18 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 35; CoefficientList[Series[Product[1/(1 - LucasL[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 35; CoefficientList[Series[Exp[Sum[Sum[LucasL[j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d LucasL[d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 35}]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} Lucas(j)^k*x^(j*k)/k).
From Vaclav Kotesovec, Feb 23 2019: (Start)
a(n) ~ c * 3^(n/2), where
c = 27050904.849254721356174679220734831574107371522481898944915... if n is even,
c = 27050894.152054775323471273913497954429537332266942696921416... if n is odd.
In closed form, c = ((3 + sqrt(3)) * Product_{k>=3}(1/(1 - Lucas(k)/3^(k/2))) + (-1)^n * (3 - sqrt(3)) * Product_{k>=3}(1/(1 - (-1)^k*Lucas(k)/3^(k/2))))/4.
(End)
Showing 1-3 of 3 results.