cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A023882 Expansion of g.f.: 1/Product_{n>0} (1 - n^n * x^n).

Original entry on oeis.org

1, 1, 5, 32, 304, 3537, 52010, 895397, 18016416, 410889848, 10523505770, 298220329546, 9274349837081, 313761671751672, 11474635626789410, 450964042480390679, 18954785687060988578, 848386888530723146912
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-k^k*x^k): k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
  • Maple
    seq(coeff(series(1/mul(1-k^k*x^k,k=1..n),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 31 2018
  • Mathematica
    nmax=20; CoefficientList[Series[Product[1/(1-k^k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 19 2015 *)
  • PARI
    m=20; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-k^k*x^k))) \\ G. C. Greubel, Oct 30 2018
    

Formula

Log of g.f.: Sum_{k>=1} (sigma(k, k+1)/k) x^k, where sigma(k, q) is the sum of the q-th powers of the divisors of k.
a(n) ~ n^n * (1 + exp(-1)/n + (1/2*exp(-1)+5*exp(-2))/n^2). - Vaclav Kotesovec, Dec 19 2015
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} A294645(k)*a(n-k) for n > 0. - Seiichi Manyama, Nov 09 2017

A294645 a(n) = Sum_{d|n} d^(n+1).

Original entry on oeis.org

1, 9, 82, 1057, 15626, 282252, 5764802, 134480385, 3486843451, 100048830174, 3138428376722, 107006334784468, 3937376385699290, 155572843119354936, 6568408508343827972, 295150156996346511361, 14063084452067724991010, 708236696816416252145973
Offset: 1

Views

Author

Seiichi Manyama, Nov 05 2017

Keywords

Crossrefs

Column k=1 of A308504.

Programs

  • Mathematica
    Table[DivisorSigma[n + 1, n], {n, 1, 20}] (* Vaclav Kotesovec, Oct 07 2020 *)
  • PARI
    {a(n) = sigma(n, n+1)}
    
  • PARI
    N=66; x='x+O('x^N); Vec(sum(k=1, N, k^(k+1)*x^k/(1-(k*x)^k)))
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, 1-(k*x)^k)))) \\ Seiichi Manyama, Jun 02 2019

Formula

G.f.: Sum_{k>0} k^(k+1)*x^k/(1-(k*x)^k).
L.g.f.: -log(Product_{k>=1} (1 - (k*x)^k)) = Sum_{k>=1} a(k)*x^k/k. - Seiichi Manyama, Jun 02 2019
a(n) ~ n^(n+1). - Vaclav Kotesovec, Oct 07 2020

A294653 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1-j^(k*j)*x^j) in powers of x.

Original entry on oeis.org

1, 1, -1, 1, -1, -1, 1, -1, -4, 0, 1, -1, -16, -23, 0, 1, -1, -64, -713, -229, 1, 1, -1, -256, -19619, -64807, -2761, 0, 1, -1, -1024, -531185, -16757533, -9688425, -42615, 1, 1, -1, -4096, -14347883, -4294435855, -30499541197, -2165979799, -758499, 0
Offset: 0

Views

Author

Seiichi Manyama, Nov 06 2017

Keywords

Examples

			Square array begins:
    1,    1,      1,         1,           1, ...
   -1,   -1,     -1,        -1,          -1, ...
   -1,   -4,    -16,       -64,        -256, ...
    0,  -23,   -713,    -19619,     -531185, ...
    0, -229, -64807, -16757533, -4294435855, ...
		

Crossrefs

Columns k=0..1 give A010815, A292312.
Rows n=0..2 give A000012, (-1)*A000012, (-1)*A000302.

Programs

  • Mathematica
    rows = 10;
    col[k_] := col[k] = CoefficientList[Product[(1 - j^(k*j)*x^j), {j, 1, rows + 3}] + O[x]^(rows + 3), x];
    A[n_, k_] := col[k][[n + 1]];
    (* or: *)
    A[0, ] = 1; A[n, k_] := A[n, k] = -(1/n)*Sum[DivisorSum[j, #^(1 + k*j) &]*A[n - j, k], {j, 1, n}];
    Table[A[n - k, k], {n, 0, rows - 1}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 10 2017 *)

Formula

A(0,k) = 1 and A(n,k) = -(1/n) * Sum_{j=1..n} (Sum_{d|j} d^(1+k*j)) * A(n-j,k) for n > 0.

A294947 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of exp(-Sum_{j>0} sigma_k(j)*x^j/j) in powers of x.

Original entry on oeis.org

1, 1, -1, 1, -1, -2, 1, -1, -4, -7, 1, -1, -8, -23, -57, 1, -1, -16, -73, -229, -541, 1, -1, -32, -227, -927, -2761, -7126, 1, -1, -64, -697, -3757, -13969, -42615, -108072, 1, -1, -128, -2123, -15207, -70237, -254580, -758499, -1966034
Offset: 0

Views

Author

Seiichi Manyama, Nov 11 2017

Keywords

Examples

			Square array begins:
      1,     1,      1,      1,       1, ...
     -1,    -1,     -1,     -1,      -1, ...
     -2,    -4,     -8,    -16,     -32, ...
     -7,   -23,    -73,   -227,    -697, ...
    -57,  -229,   -927,  -3757,  -15207, ...
   -541, -2761, -13969, -70237, -351361, ...
		

Crossrefs

Columns k=0..2 give A294948, A292312, A294809.
Rows n=0..1 give A000012, (-1)*A000012.

Formula

G.f. of column k: Product_{j>0} (1 - j^j*x^j)^(j^(k-1)).

A292407 Expansion of Product_{k>=1} ((1 - k^k*x^k)/(1 + k^k*x^k)).

Original entry on oeis.org

1, -2, -6, -40, -386, -4952, -77116, -1406164, -29389570, -692122610, -18136684128, -523599632000, -16516245738140, -565284631133600, -20867650682241704, -826570263691236456, -34971594470460748146, -1574134630989710480092
Offset: 0

Views

Author

Seiichi Manyama, Sep 15 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1 - k^k*x^k)/(1 + k^k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 16 2017 *)

Formula

Convolution of A292311 and A292312.
Convolution inverse of A292406.
a(n) ~ -2*n^n * (1 - 2*exp(-1)/n - (exp(-1) + 6*exp(-2))/n^2). - Vaclav Kotesovec, Sep 16 2017
Showing 1-5 of 5 results.