A294948
Expansion of Product_{n>=1} (1 - n^n*x^n)^(1/n).
Original entry on oeis.org
1, -1, -2, -7, -57, -541, -7126, -108072, -1966034, -40620681, -952305757, -24824933859, -714742428220, -22491627743504, -768696164146118, -28344822040761041, -1121925480573229737, -47442205907345238412, -2134679753840086267669
Offset: 0
A294946
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of exp(Sum_{j>0} sigma_k(j)*x^j/j) in powers of x.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 1, 5, 12, 1, 1, 9, 32, 82, 1, 1, 17, 90, 304, 725, 1, 1, 33, 260, 1162, 3537, 8811, 1, 1, 65, 762, 4516, 17435, 52010, 128340, 1, 1, 129, 2252, 17722, 86529, 310193, 895397, 2257687, 1, 1, 257, 6690, 69964, 431675, 1865766, 6286826, 18016416, 45658174
Offset: 0
Square array begins:
1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, ...
3, 5, 9, 17, 33, ...
12, 32, 90, 260, 762, ...
82, 304, 1162, 4516, 17722, ...
725, 3537, 17435, 86529, 431675, ...
A294951
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(-Sum_{j>=1} sigma_k(j) * x^j).
Original entry on oeis.org
1, 1, -1, 1, -1, -3, 1, -1, -5, -1, 1, -1, -9, -7, 1, 1, -1, -17, -31, 1, 279, 1, -1, -33, -115, -23, 839, 301, 1, -1, -65, -391, -215, 3399, 4171, 12263, 1, -1, -129, -1267, -1319, 17519, 41311, 54305, 5601, 1, -1, -257, -3991, -6839, 102999, 387031, 473129, 102817, -431281
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, ...
-1, -1, -1, -1, -1, ...
-3, -5, -9, -17, -33, ...
-1, -7, -31, -115, -391, ...
1, 1, -23, -215, -1319, ...
279, 839, 3399, 17519, 102999, ...
Showing 1-3 of 3 results.
Comments