cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A294948 Expansion of Product_{n>=1} (1 - n^n*x^n)^(1/n).

Original entry on oeis.org

1, -1, -2, -7, -57, -541, -7126, -108072, -1966034, -40620681, -952305757, -24824933859, -714742428220, -22491627743504, -768696164146118, -28344822040761041, -1121925480573229737, -47442205907345238412, -2134679753840086267669
Offset: 0

Views

Author

Seiichi Manyama, Nov 11 2017

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1/n, g(n) = n^n.

Crossrefs

Column k=0 of A294947.

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-k^k*x^k)^(1/k)))

Formula

G.f.: exp(-Sum_{k>0} A023887(k)*x^k/k).
a(0) = 1 and a(n) = -(1/n) * Sum_{k=1..n} A023887(k)*a(n-k) for n > 0.

A294946 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of exp(Sum_{j>0} sigma_k(j)*x^j/j) in powers of x.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 5, 12, 1, 1, 9, 32, 82, 1, 1, 17, 90, 304, 725, 1, 1, 33, 260, 1162, 3537, 8811, 1, 1, 65, 762, 4516, 17435, 52010, 128340, 1, 1, 129, 2252, 17722, 86529, 310193, 895397, 2257687, 1, 1, 257, 6690, 69964, 431675, 1865766, 6286826, 18016416, 45658174
Offset: 0

Views

Author

Seiichi Manyama, Nov 11 2017

Keywords

Examples

			Square array begins:
     1,    1,     1,     1,      1, ...
     1,    1,     1,     1,      1, ...
     3,    5,     9,    17,     33, ...
    12,   32,    90,   260,    762, ...
    82,  304,  1162,  4516,  17722, ...
   725, 3537, 17435, 86529, 431675, ...
		

Crossrefs

Columns k=0..2 give A023881, A023882, A294813.
Rows n=0+1, 2 give A000012, A000051(n+1).

Formula

G.f. of column k: Product_{j>0} 1/(1 - j^j*x^j)^(j^(k-1)).

A294951 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(-Sum_{j>=1} sigma_k(j) * x^j).

Original entry on oeis.org

1, 1, -1, 1, -1, -3, 1, -1, -5, -1, 1, -1, -9, -7, 1, 1, -1, -17, -31, 1, 279, 1, -1, -33, -115, -23, 839, 301, 1, -1, -65, -391, -215, 3399, 4171, 12263, 1, -1, -129, -1267, -1319, 17519, 41311, 54305, 5601, 1, -1, -257, -3991, -6839, 102999, 387031, 473129, 102817, -431281
Offset: 0

Views

Author

Seiichi Manyama, Nov 12 2017

Keywords

Examples

			Square array A(n,k) begins:
     1,   1,    1,     1,      1, ...
    -1,  -1,   -1,    -1,     -1, ...
    -3,  -5,   -9,   -17,    -33, ...
    -1,  -7,  -31,  -115,   -391, ...
     1,   1,  -23,  -215,  -1319, ...
   279, 839, 3399, 17519, 102999, ...
		

Crossrefs

Columns k=0..2 give A294402, A294403, A294404.
Rows n=0..2 give A000012, (-1)*A000012, (-1)*A000051(n+1).
Cf. A294947.

Formula

A(0,k) = 1 and A(n,k) = -(n-1)! * Sum_{j=1..n} j*sigma_k(j)*A(n-j,k)/(n-j)! for n > 0.
Showing 1-3 of 3 results.