cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A342675 a(n) = Sum_{d|n} d^(n-d+1).

Original entry on oeis.org

1, 3, 4, 13, 6, 120, 8, 1161, 2197, 16148, 12, 603190, 14, 5773008, 50422464, 201359377, 18, 16590656229, 20, 269768284118, 4748723771432, 3138430473896, 24, 2972582195034162, 476837158203151, 3937376419253748, 1350852564961601560, 4066515044181860654, 30, 1036488835382356683530, 32
Offset: 1

Views

Author

Seiichi Manyama, Mar 18 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(n - # + 1) &]; Array[a, 30] (* Amiram Eldar, Mar 18 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^(n-d+1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, k*x^k/(1-(k*x)^k)))

Formula

G.f.: Sum_{k>=1} k * x^k/(1 - (k * x)^k).
If p is prime, a(p) = 1 + p.

A359442 a(n) = Sum_{d|n} d^(n + 1 - d - n/d).

Original entry on oeis.org

1, 2, 2, 4, 2, 15, 2, 74, 83, 643, 2, 12635, 2, 117715, 397188, 2359426, 2, 103572204, 2, 1260918355, 13841818644, 25937425627, 2, 5612318393211, 152587890627, 23298085126579, 1853020231898564, 2422197090649523, 2, 1032944452284531101, 2, 10376297939508166658
Offset: 1

Views

Author

Seiichi Manyama, Jan 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(n + 1 - # - n/#) &]; Array[a, 32] (* Amiram Eldar, Aug 09 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d^(n+1-d-n/d));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-(k*x)^k/k)))

Formula

G.f.: Sum_{k>0} x^k / (1 - (k * x)^k / k).
If p is prime, a(p) = 2.
Showing 1-2 of 2 results.