A308509 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(k*n/d).
1, 1, 2, 1, 3, 2, 1, 5, 4, 3, 1, 9, 10, 9, 2, 1, 17, 28, 33, 6, 4, 1, 33, 82, 129, 26, 24, 2, 1, 65, 244, 513, 126, 182, 8, 4, 1, 129, 730, 2049, 626, 1458, 50, 41, 3, 1, 257, 2188, 8193, 3126, 11954, 344, 577, 37, 4, 1, 513, 6562, 32769, 15626, 99594, 2402, 8705, 811, 68, 2
Offset: 1
Examples
Square array begins: 1, 1, 1, 1, 1, 1, 1, ... 2, 3, 5, 9, 17, 33, 65, ... 2, 4, 10, 28, 82, 244, 730, ... 3, 9, 33, 129, 513, 2049, 8193, ... 2, 6, 26, 126, 626, 3126, 15626, ... 4, 24, 182, 1458, 11954, 99594, 840242, ...
Links
- Seiichi Manyama, Antidiagonals n = 1..140, flattened
Programs
-
Mathematica
T[n_, k_] := DivisorSum[n, #^(k*n/#) &]; Table[T[k, n - k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, May 11 2021 *)
-
PARI
T(n,k) = sumdiv(n, d, (n/d)^(k*d)); matrix(9, 9, n, k, T(n,k-1)) \\ Michel Marcus, Jun 02 2019
Formula
L.g.f. of column k: -log(Product_{j>=1} (1 - j^k*x^j)^(1/j)).
A(n,k) = Sum_{d|n} (n/d)^(k*d).
Comments