cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A122172 Triangle read by rows relating A074139, A074141, A078436 and A079025.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 4, 3, 1, 1, 4, 6, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 3, 3, 2, 1, 1, 3, 4, 4, 3, 1, 1, 3, 5, 5, 3, 1, 1, 4, 7, 7, 4, 1, 1, 5, 10, 10, 5, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Alford Arnold, Aug 23 2006

Keywords

Comments

A proper definition is needed for this sequence.
Are the row sums A074139(n) and the row lengths A000041(n)? - R. J. Mathar, May 08 2019 [Not exactly: see below. - M. F. Hasler, Jan 07 2024]
From M. F. Hasler, Jan 06 2024: (Start)
I get this triangle as T(n,k) = # { v in S(p_n), |v| = k }, where p_n is the n-th partition as listed in A036036 or A036037 (which has a nice table of the p's), and S(p) = {0, ..., p[1]} x ... x {0, ..., p[#p]}, the set of vectors v with 0 <= v[i] <= p[i] for all indices i from 1 to #p = number of parts in p.
Then the row sums are indeed the total number of elements in S(p_n) which is equal to the product (p[1]+1)*...*(p[#p]+1) which is also the number of divisors of the Heinz number of p (cf. A185974).
The row lengths are 1 + |p| = 1 + sum of all parts of p (corresponding to the possible values of |v| ranging from 0 to |p|), repeated A000041(|p|) times: A000041(0) = 1 row of length 0+1 for the partition () of 0, A000041(1) = 1 row of length 1+1 for partition (1) of 1; A000041(2) = 2 rows of length 2+1 for the two partitions (2) and (1,1) of 2; A000041(3) = 3 rows of length 3+1 for the 3 partitions {(3), (2,1), (1,1,1)} of 3; etc. (End)

Examples

			The triangle begins:
  1
  1 1
  1 1 1
  1 2 1
  1 1 1 1
  1 2 2 1
  1 3 3 1
  1 1 1 1 1
  1 2 2 2 1
  1 2 3 2 1
  1 3 4 3 1
  1 4 6 4 1
  1 1 1 1 1 1
  1 2 2 2 2 1
  1 2 3 3 2 1
  1 3 4 4 3 1
  1 3 5 5 3 1
  1 4 7 7 4 1
  1 5 10 10 5 1
		

Crossrefs

Cf. A036036 (partitions in A-S order), A036037 (the same, parts reversed), A185974 (corresponding Heinz numbers).

Programs

  • PARI
    A122172_row(n, p=part(n))={my(c=Vec(0, vecsum(p)+1)); forvec(v=[[0, k]| k<-p], c[vecsum(v)+1]++); c} \\ instead of n one can directly give p as 2nd arg
    /* helper function: n-th partition as listed in A036036, A036037 or A185974 */
    part(n)={my(c, r=0); while(n >= c = numbpart(r), n -= c; r++); partitions(r)[n+1]}
    for(n=0,5, forpart(p=n, print(A122172_row(, Vec(p))) )) \\ Illustration. \\ M. F. Hasler, Jan 06 2024

Extensions

More terms from M. F. Hasler, Jan 07 2024

A256155 Decimal expansion of a constant related to A074141.

Original entry on oeis.org

1, 8, 5, 6, 3, 1, 4, 6, 5, 6, 3, 6, 1, 0, 1, 1, 4, 7, 2, 7, 4, 7, 5, 3, 5, 4, 2, 3, 2, 2, 6, 9, 2, 8, 4, 0, 4, 8, 4, 2, 5, 8, 8, 5, 9, 4, 7, 2, 2, 9, 0, 7, 0, 6, 8, 2, 0, 1, 0, 2, 5, 3, 9, 0, 7, 5, 4, 7, 6, 3, 7, 5, 6, 4, 7, 4, 6, 5, 1, 0, 0, 1, 9, 7, 1, 5, 7, 0, 7, 2, 9, 6, 0, 4, 2, 1, 5, 1, 9, 3, 0, 3, 9, 4, 5, 1, 9
Offset: 2

Views

Author

Vaclav Kotesovec, Mar 16 2015

Keywords

Examples

			18.5631465636101147274753542322692840484258859472290706820102539...
		

Crossrefs

Formula

Equals limit n->infinity A074141(n) / 2^n.
Equals Product_{k>=2} 1/(1-(k+1)/2^k). - Vaclav Kotesovec, May 10 2021

A122768 Number of combinations which can be taken from the integer partitions of n. Total number of cases in the (n,m)-fragmentation process.

Original entry on oeis.org

0, 1, 3, 7, 15, 29, 54, 95, 163, 270, 439, 696, 1088, 1669, 2530, 3780, 5591, 8173, 11845, 17000, 24215, 34210, 48008, 66895, 92660, 127554, 174651, 237830, 322297, 434625, 583524, 779972, 1038356, 1376787, 1818755, 2393775, 3139812, 4104433, 5348375, 6947545, 8998201, 11620313, 14965126, 19220569
Offset: 0

Views

Author

Thomas Wieder, Sep 11 2006

Keywords

Comments

Consider a fragmentation process of an n-object which consists of n unlabeled elements (= 1-parts). By definition the n-object can scatter into up to n m-parts where an m-part consists of 1 up to n elements. A 4-object can split up for example into 4 1-parts which corresponds to the integer partition [1,1,1,1], or it can, for example, rest unfragmented which corresponds to [4]. Since the number of integer partitions of n=4 equals 5, there are 5 n=4-fragmentation processes.
Now we ask for the probability of getting an m-part after an n-fragmentation. Think of a Greek statue which had been broken into n parts and covered by earth. We could find several m-parts, in the most lucky case we would find all m-parts which add up to m_1+m_2+...+m_n=n. Then the statue could be restored.
For example for n=4 we could ask for the probability prob(n=4,m=2) of just a single 2-part. We have 2 cases for a 2-part and we have 15 cases in total, thus prob(n=4,m=2)=2/15 (the 2 cases come from [1,1,2] and [2,2]). The chances to find the two 2-parts from the [2,2]-fragmentation are 1/15 only. The chances to find the n=4-object unsplitted are also 1/15 only.
This sequence is generated over the unordered partitions; for example, when n = 4 there are 1+3+2+5+4 = 15 cases. If we allow a null case for each of the five partitions then we have 15+5 = 20 which is A000712(4). - Alford Arnold, Dec 12 2006
Number of partitions into two kinds of parts with the first kind of parts used in each partition. - Joerg Arndt, Jun 21 2011

Examples

			a(n=4) = 15 because the possible combinations of all five integer partitions of n=4 are: [1], [1, 1], [1, 1, 1], [1, 1, 1, 1], [1], [2], [1, 1], [1, 2], [1, 1, 2], [2], [2, 2], [1], [3], [1, 3], [4].
		

Crossrefs

Programs

  • Haskell
    a122768 n = a122768_list !! n
    a122768_list = 0 : f (tail a000041_list) [1] where
       f (p:ps) rs = (sum $ zipWith (*) rs $ tail a000041_list) : f ps (p : rs)
    -- Reinhard Zumkeller, Nov 09 2015
    
  • Maple
    A122768 := proc(n::integer) local i,j,prttnlst,prttn,ZahlTeile,H; prttnlst:=partition(n); H := NULL; for i from 1 to nops(prttnlst) do prttn := prttnlst[i]; ZahlTeile := nops(prttn); for j from 1 to ZahlTeile do H := H,op(choose(prttn,j)); od; od; print(n,H,nops([H])); end proc;
    A000712 := proc(n) option remember ; add(combinat[numbpart](k)*combinat[numbpart](n-k),k=0..n) ; end: A000041 := proc(n) combinat[numbpart](n) ; end: A122768 := proc(n::integer) RETURN( A000712(n)-A000041(n)) ; end: for n from 0 to 80 do printf("%d,",A122768(n)) ; od: # R. J. Mathar, Aug 25 2008
    # third Maple program:
    b:= proc(n, k) option remember; `if`(n=0, 1, add(
          k*numtheory[sigma](j)*b(n-j, k), j=1..n)/n)
        end:
    a:= n-> b(n,2)-b(n,1):
    seq(a(n), n=0..50);  # Alois P. Heinz, Mar 31 2017
  • Mathematica
    1/QPochhammer[x]^2 - 1/QPochhammer[x] + O[x]^50 // CoefficientList[#, x]& (* Jean-François Alcover, Feb 05 2017, after Joerg Arndt *)
  • PARI
    x='x+O('x^66); /* that many terms */
    Vec(1/eta(x)^2-1/eta(x)) /* show terms (omitting initial zero) */
    /* Joerg Arndt, Jun 21 2011 */
    
  • Python
    from sympy import npartitions
    def A122768(n): return (sum(npartitions(k)*npartitions(n-k) for k in range(1,n+1>>1))<<1) + (0 if n&1 else npartitions(n>>1)**2) + npartitions(n) if n else 0 # Chai Wah Wu, Sep 25 2023

Formula

G.f.: 1/P(x)^2 - 1/P(x) where P(x)=prod(k>=1, 1-x^k ). - Joerg Arndt, Jun 21 2011
With sum_i^P(n) = the sum over all P(n) integer partitions of n, sum_j^p(i) = the sum over all p(i) parts of the i-th integer partition, prttn(i) = the i-th partition whereat prttn(i) is a list, choose(L,k) = construct the list LC of combinations of a list L (see Maple), |LC| = number of elements of list LC (=Maple's nops command) we have a(n) = sum_i^P(n) sum_j^p(i) |choose(prttn,j)|
a(n) = A000712(n) - A000041(n). - Alford Arnold, Dec 12 2006
a(n) = A144064(n,2)-A144064(n,1). - Alois P. Heinz, Mar 31 2017
a(n) ~ exp(2*Pi*sqrt(n/3)) / (4*3^(3/4)*n^(5/4)) * (1 - (Pi/12 + 45/(16*Pi))/sqrt(3*n)). - Vaclav Kotesovec, Mar 31 2017

Extensions

Extended by R. J. Mathar, Aug 25 2008

A077335 Sum of products of squares of parts in all partitions of n.

Original entry on oeis.org

1, 1, 5, 14, 46, 107, 352, 789, 2314, 5596, 14734, 34572, 92715, 210638, 531342, 1250635, 3042596, 6973974, 16973478, 38399806, 91301956, 207992892, 483244305, 1089029008, 2533640066, 5642905974, 12912848789, 28893132440, 65342580250, 144803524640
Offset: 0

Views

Author

Vladeta Jovovic, Nov 30 2002

Keywords

Examples

			The partitions of 4 are 4, 1+3, 2+2, 2+1+1, 1+1+1+1, the corresponding products of squares of parts are 16,9,16,4,1 and their sum is a(4) = 46.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +`if`(i>n, 0, i^2*b(n-i, i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 07 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, i^2*b[n-i, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 02 2015, after Alois P. Heinz *)
    Table[Total[Times@@(#^2)&/@IntegerPartitions[n]],{n,0,30}] (* Harvey P. Dale, Apr 29 2018 *)
    Table[Total[Times@@@(IntegerPartitions[n]^2)],{n,0,30}] (* Harvey P. Dale, Sep 07 2023 *)
  • Maxima
    S(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 07 2014 */
    
  • PARI
    N=22;q='q+O('q^N); Vec(1/prod(n=1,N,1-n^2*q^n)) \\ Joerg Arndt, Aug 31 2015

Formula

G.f.: 1/Product_{m>0} (1 - m^2*x^m).
Recurrence: a(n) = (1/n)*Sum_{k=1..n} b(k)*a(n-k), where b(k) = Sum_{d divides k} d^(2*k/d + 1).
a(n) = S(n,1), where S(n,m) = n^2 + Sum_{k=m..n/2} k^2*S(n-k,k), S(n,n) = n^2, S(n,m) = 0 for m > n. - Vladimir Kruchinin, Sep 07 2014
From Vaclav Kotesovec, Mar 16 2015: (Start)
a(n) ~ c * 3^(2*n/3), where
c = 668.1486183948153029651700839617715291485899132694809388646986235... if n=3k
c = 667.8494657534167286226227360927068283390090685342574808235616845... if n=3k+1
c = 667.8481656987523944806949678900876994934226621916594805916358627... if n=3k+2
(End)
In closed form, a(n) ~ (Product_{k>=4}(1/(1 - k^2/3^(2*k/3))) / ((1 - 3^(-2/3)) * (1 - 4*3^(-4/3))) + Product_{k>=4}(1/(1 - (-1)^(2*k/3)*k^2/3^(2*k/3))) / ((-1)^(2*n/3) * (1 + 4/3*(-1/3)^(1/3)) * (1 - (-1/3)^(2/3))) + Product_{k>=4}(1/(1 - (-1)^(4*k/3)*k^2/3^(2*k/3))) / ((-1)^(4*n/3) * (1 + (-1)^(1/3)*3^(-2/3)) * (1 - 4*(-1)^(2/3)*3^(-4/3)))) * 3^(2*n/3 - 1). - Vaclav Kotesovec, Apr 25 2017
G.f.: exp(Sum_{k>=1} Sum_{j>=1} j^(2*k)*x^(j*k)/k). - Ilya Gutkovskiy, Jun 14 2018

A074139 Number of divisors of A036035(n,k).

Original entry on oeis.org

1, 2, 3, 4, 4, 6, 8, 5, 8, 9, 12, 16, 6, 10, 12, 16, 18, 24, 32, 7, 12, 15, 16, 20, 24, 27, 32, 36, 48, 64, 8, 14, 18, 20, 24, 30, 32, 36, 40, 48, 54, 64, 72, 96, 128, 9, 16, 21, 24, 25, 28, 36, 40, 45, 48, 48, 60, 64, 72, 81, 80, 96, 108, 128, 144, 192, 256
Offset: 0

Views

Author

Amarnath Murthy, Aug 28 2002

Keywords

Examples

			Express A036035(n,k) by its prime signature; add one to each exponent, then multiply: 180 = (2^2)*(3^2)*(5^1) therefore the number of divisors is (2+1)*(2+1)*(1+1)= 18
From _Michel Marcus_, Nov 11 2015: (Start)
As an irregular triangle, whose n-th row has A000041(n) terms, sequence begins:
  1;
  2;
  3,  4;
  4,  6,  8;
  5,  8,  9, 12, 16;
  6, 10, 12, 16, 18, 24, 32;
  ...
(End)
		

Crossrefs

Row sums give A074141.

Programs

  • PARI
    tabf(nn) = {for (n=1, nn, forpart(p=n, print1(prod(k=1, #p, (1+p[k])), ", ")); print(););} \\ Michel Marcus, Nov 11 2015

Formula

T(n,k) = A000005(A036035(n,k)). - R. J. Mathar, Aug 28 2018

Extensions

More terms from Alford Arnold, Sep 17 2002
Term ordering corrected by Alois P. Heinz, Aug 21 2019

A077365 Sum of products of factorials of parts in all partitions of n.

Original entry on oeis.org

1, 1, 3, 9, 37, 169, 981, 6429, 49669, 430861, 4208925, 45345165, 536229373, 6884917597, 95473049469, 1420609412637, 22580588347741, 381713065286173, 6837950790434781, 129378941557961565, 2578133190722896861, 53965646957320869469, 1183822028149936497501
Offset: 0

Views

Author

Vladeta Jovovic, Nov 30 2002

Keywords

Comments

Row sums of arrays A069123 and A134133. Row sums of triangle A134134.

Examples

			The partitions of 4 are 4, 3+1, 2+2, 2+1+1, 1+1+1+1, the corresponding products of factorials of parts are 24,6,4,2,1 and their sum is a(4) = 37.
1 + x + 3 x^2 + 9 x^3 + 37 x^4 + 169 x^5 + 981 x^6 + 6429 x^7 + 49669 x^8 + ...
		

Crossrefs

Cf. A051296 (with compositions instead of partitions).

Programs

  • Maple
    b:= proc(n, i, j) option remember;
          `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, j)+
          `if`(i>n, 0, j^i*b(n-i, i, j+1))))
        end:
    a:= n-> b(n$2, 1):
    seq(a(n), n=0..40);  # Alois P. Heinz, Aug 03 2013
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1)+`if`(i>n, 0, b(n-i, i)*i!)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 11 2016
  • Mathematica
    Table[Plus @@ Map[Times @@ (#!) &, IntegerPartitions[n]], {n, 0, 20}] (* Olivier Gérard, Oct 22 2011 *)
    a[ n_] := If[ n < 0, 0, Plus @@ Times @@@ (IntegerPartitions[ n] !)] (* Michael Somos, Feb 09 2012 *)
    nmax=20; CoefficientList[Series[Product[1/(1-k!*x^k),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 14 2015 *)
    b[n_, i_, j_] := b[n, i, j] = If[n==0, 1, If[i<1, 0, b[n, i-1, j] + If[i>n, 0, j^i*b[n-i, i, j+1]]]]; a[n_] := b[n, n, 1]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 12 2015, after Alois P. Heinz *)
  • PARI
    N=66; q='q+O('q^N);
    gf= 1/prod(n=1,N, (1-n!*q^n) );
    Vec(gf)
    /* Joerg Arndt, Oct 06 2012 */

Formula

G.f.: 1/Product_{m>0} (1-m!*x^m).
Recurrence: a(n) = 1/n*Sum_{k=1..n} b(k)*a(n-k), where b(k) = Sum_{d divides k} d*d!^(k/d).
a(n) ~ n! * (1 + 1/n + 3/n^2 + 12/n^3 + 67/n^4 + 457/n^5 + 3734/n^6 + 35741/n^7 + 392875/n^8 + 4886114/n^9 + 67924417/n^10), for coefficients see A256125. - Vaclav Kotesovec, Mar 14 2015
G.f.: exp(Sum_{k>=1} Sum_{j>=1} (j!)^k*x^(j*k)/k). - Ilya Gutkovskiy, Jun 18 2018

Extensions

Unnecessarily complicated mma code deleted by N. J. A. Sloane, Sep 21 2009

A079025 Triangular array read by rows: column sums of frequency distributions associated with number of divisors of least prime signatures.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 3, 6, 6, 3, 5, 12, 16, 12, 5, 7, 20, 32, 32, 20, 7, 11, 35, 65, 79, 65, 35, 11, 15, 54, 113, 160, 160, 113, 54, 15, 22, 86, 199, 318, 371, 318, 199, 86, 22, 30, 128, 323, 573, 756, 756, 573, 323, 128, 30, 42, 192, 523, 1013, 1485, 1683, 1485, 1013, 523, 192, 42
Offset: 0

Views

Author

Alford Arnold, Feb 01 2003

Keywords

Comments

Row sums of the triangular table is sequence A074141. The left column and the main diagonal are the partition numbers A000041.
T(n,k) is the total number of divisors d of m (counted with multiplicity), such that the prime signature of d is a partition of k and m runs through the set of least numbers whose prime signature is a partition of n. - Alois P. Heinz, Aug 23 2019

Examples

			The seven least integers associated with prime signatures 5, 41, 32, 311, 221, 2111, 11111 (partitions of 5) are 32, 48, 72, 120, 180, 420 and 2310 (see A036035).  The corresponding numbers of divisors 6, 10, 12, 16, 18, 24 and 32 (see A074139) can be refined with the following frequency distributions D(p,s), which counts how many divisors of the entry of A036035 have a sum of prime exponents s, 0<=s<=n:
  1  1  1  1  1 1
  1  2  2  2  2 1
  1  2  3  3  2 1
  1  3  4  4  3 1
  1  3  5  5  3 1
  1  4  7  7  4 1
  1  5 10 10  5 1 , therefore the column sums are:
  7 20 32 32 20 7 , which is row 5 of the triangle.
Triangle T(n,k) begins:
    1
    1   1
    2   3    2
    3   6    6    3
    5  12   16   12    5
    7  20   32   32   20     7
   11  35   65   79   65    35    11
   15  54  113  160  160   113    54    15
   22  86  199  318  371   318   199    86    22
   30 128  323  573  756   756   573   323   128   30
   42 192  523 1013 1485  1683  1485  1013   523  192   42
   56 275  803 1683 2701  3405  3405  2701  1683  803  275   56
   77 399 1237 2776 4822  6662  7413  6662  4822 2776 1237  399  77
  101 556 1826 4366 8144 12205 14901 14901 12205 8144 4366 1826 556 101
  ...
		

Crossrefs

Row sums give A074141.
T(2n,n) gives A309915.

Programs

  • Maple
    A079025 := proc(n,k)
        local psig ,d,a;
        a := 0 ;
        for psig in A036035_row(n) do
            for d in numtheory[divisors](psig) do
                if numtheory[bigomega](d) = k then
                    a := a+1 ;
                end if:
            end do:
        end do:
        a ;
    end proc:
    for n from 0 to 13 do
        for k from 0 to n do
            printf("%d ",A079025(n,k)) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, Aug 28 2018
    # second Maple program:
    b:= proc(n, i) option remember; expand(`if`(n=0 or i=1, (x+1)^n,
          b(n, i-1) +factor((x^(i+1)-1)/(x-1))*b(n-i, min(n-i, i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Aug 22 2019
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0 || i == 1, (x + 1)^n, b[n, i - 1] + Factor[(x^(i + 1) - 1)/(x - 1)]*b[n - i, Min[n - i, i]]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 06 2019, after Alois P. Heinz *)

A261718 Number A(n,k) of partitions of n where each part i is marked with a word of length i over a k-ary alphabet whose letters appear in alphabetical order; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 3, 0, 1, 4, 15, 18, 5, 0, 1, 5, 26, 55, 50, 7, 0, 1, 6, 40, 124, 216, 118, 11, 0, 1, 7, 57, 235, 631, 729, 301, 15, 0, 1, 8, 77, 398, 1470, 2780, 2621, 684, 22, 0, 1, 9, 100, 623, 2955, 8001, 12954, 8535, 1621, 30, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 29 2015

Keywords

Examples

			A(3,2) = 18: 3aaa, 3aab, 3abb, 3bbb, 2aa1a, 2aa1b, 2ab1a, 2ab1b, 2bb1a, 2bb1b, 1a1a1a, 1a1a1b, 1a1b1a, 1a1b1b, 1b1a1a, 1b1a1b, 1b1b1a, 1b1b1b.
Square array A(n,k) begins:
  1,  1,   1,    1,     1,      1,      1,       1, ...
  0,  1,   2,    3,     4,      5,      6,       7, ...
  0,  2,   7,   15,    26,     40,     57,      77, ...
  0,  3,  18,   55,   124,    235,    398,     623, ...
  0,  5,  50,  216,   631,   1470,   2955,    5355, ...
  0,  7, 118,  729,  2780,   8001,  19158,   40299, ...
  0, 11, 301, 2621, 12954,  45865, 130453,  317905, ...
  0, 15, 684, 8535, 55196, 241870, 820554, 2323483, ...
		

Crossrefs

Rows n=0-2 give: A000012, A001477, A005449.
Main diagonal gives A209668.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1))))
        end:
    A:= (n, k)-> b(n, n, k):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, b[n - i, i, k]*Binomial[i + k - 1, k - 1]]]]; A[n_, k_] := b[n, n, k]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{i=0..k} C(k,i) * A261719(n,k-i).

A074140 Sum of least integers of prime signatures over all partitions of n.

Original entry on oeis.org

1, 2, 10, 50, 346, 3182, 38770, 609290, 11226106, 250148582, 7057182250, 216512001950, 7903965900226, 321552174623162, 13779150603234010, 644574260638821590, 33968684108427733426, 1994885097404292104942, 121496572792097514728530, 8114030083731371137603190
Offset: 0

Views

Author

Amarnath Murthy, Aug 28 2002

Keywords

Comments

Old name was: Sum of terms in n-th group in A036035.
a(n) is also the sum of terms in n-th row of A063008, A087443 or A227955.

Examples

			a(6) = 64+96+144+216+240+360+900+840+1260+4620+30030 = 38770.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, j) option remember;
          `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, j)+
          `if`(i>n, 0, ithprime(j)^i*b(n-i, i, j+1))))
        end:
    a:= n-> b(n$2, 1):
    seq(a(n), n=0..40);  # Alois P. Heinz, Aug 03 2013
  • Mathematica
    b[n_, i_, j_] := b[n, i, j] = If[n == 0, 1, If[i<1, 0, b[n, i-1, j]+If[i>n, 0, Prime[j]^i*b[n-i, i, j+1]]]]; a[n_] := b[n, n, 1]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 25 2014, after Alois P. Heinz *)
  • Sage
    def A074140(n):
        L = []
        P = primes_first_n(n)
        for p in Partitions(n):
            m = mul(P[i]^pi for i, pi in enumerate(p))
            L.append(m)
        return add(L)
    [A074140(n) for n in (0..20)]  # Peter Luschny, Aug 02 2013

Extensions

More terms from Alford Arnold, Sep 10 2002
a(10)-a(12) from Thomas A. Rockwell (LlewkcoRAT(AT)aol.com), Sep 30 2004
a(12) corrected by Peter Luschny, Aug 03 2013
New name from Alois P. Heinz, Aug 03 2013

A238963 Number of divisors of A063008(n,k).

Original entry on oeis.org

1, 2, 3, 4, 4, 6, 8, 5, 8, 9, 12, 16, 6, 10, 12, 16, 18, 24, 32, 7, 12, 15, 20, 16, 24, 32, 27, 36, 48, 64, 8, 14, 18, 24, 20, 30, 40, 32, 36, 48, 64, 54, 72, 96, 128, 9, 16, 21, 28, 24, 36, 48, 25, 40, 45, 60, 80, 48, 64, 72, 96, 128, 81, 108, 144, 192, 256, 10, 18, 24, 32, 28, 42, 56, 30, 48, 54, 72, 96, 50, 60, 80, 90, 120, 160, 64, 96, 128, 108, 144, 192, 256, 162, 216, 288, 384, 512
Offset: 0

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Comments

Equivalent to A074139 but using canonical order.

Examples

			Triangle begins:
  1;
  2;
  3,  4;
  4,  6,  8;
  5,  8,  9, 12, 16;
  6, 10, 12, 16, 18, 24, 32;
  7, 12, 15, 20, 16, 24, 32, 27, 36, 48, 64;
  ...
		

Crossrefs

Row sums are A074141.

Programs

  • Maple
    b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
        [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
    T:= n-> map(x-> numtheory[tau](mul(ithprime(i)
            ^x[i], i=1..nops(x))), b(n$2))[]:
    seq(T(n), n=0..9);  # Alois P. Heinz, Mar 24 2020
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {Table[1, {n}]}, Join[Prepend[#, i]& /@ b[n - i, Min[n - i, i]], b[n, i - 1]]];
    T[n_] := DivisorSigma[0, #]&[Product[Prime[i]^#[[i]], {i, 1, Length[#]}]& /@ b[n, n]];
    T /@ Range[0, 9] // Flatten (* Jean-François Alcover, Jan 09 2025, after Alois P. Heinz *)
  • PARI
    \\ here b(n) is A000005.
    b(n)={numdiv(n)}
    N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
    Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 24 2020
    
  • SageMath
    def A238963row(n):
        return list(product(t + 1 for t in p) for p in Partitions(n))
    print([A238963row(n) for n in range(10)])  # Peter Luschny, Dec 11 2023

Formula

T(n, k) = A000005(A063008(n,k)).
Trow(n) = List_{p in Partitions(n)} (Product_{t in p}(t + 1)). # Peter Luschny, Dec 11 2023

Extensions

Offset corrected by Andrew Howroyd, Mar 24 2020
Showing 1-10 of 19 results. Next