A091137
The Hirzebruch numbers. a(n) = Product_{2 <= p <= n+1, p prime} p^floor(n / (p - 1)).
Original entry on oeis.org
1, 2, 12, 24, 720, 1440, 60480, 120960, 3628800, 7257600, 479001600, 958003200, 2615348736000, 5230697472000, 31384184832000, 62768369664000, 32011868528640000, 64023737057280000, 51090942171709440000, 102181884343418880000, 33720021833328230400000, 67440043666656460800000
Offset: 0
Let n = 4. The partitions of 4 are [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]. Thus a(4) = lcm([5, 4*2, 3*3, 3*2*2, 2*2*2*2]) = 720.
- P. Curtz, Integration numérique ..., Note 12, C.C.S.A., Arcueil, 1969; see pp. 36, 56.
- F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer, 3rd. ed., 1966; Lemma 1.7.3, p. 14. [From N. J. A. Sloane, Sep 06 2010]
- Michael De Vlieger, Table of n, a(n) for n = 0..443
- Abdelmalek Bedhouche and Bakir Farhi, On some products taken over the prime numbers, arXiv:2207.07957 [math.NT], 2022. See sigma_n p. 3.
- Victor M. Buchstaber and Alexander P. Veselov, Todd polynomials and Hirzebruch numbers, arXiv:2310.07383 [math.AT], Oct. 2023.
- Donghyun Kim and Jaeseong Oh, Extending the science fiction and the Loehr--Warrington formula, arXiv:2409.01041 [math.CO], 2024. See p. 32.
Starts similarly to
A002207 especially for even n and all values of
A002207 seen so far seem to divide a(n).
Cf.
A002790,
A000142,
A090622,
A090624,
A091136,
A171080,
A238963,
A275314,
A368093,
A368116,
A363596.
-
A091137 := proc(n) local a,i,p ; a := 1 ; for i from 1 do p := ithprime(i) ; if p > n+1 then break; fi; a := a*p^floor(n/(p-1)) ; od: a ; end:
seq(A091137(n), n = 0..47); # R. J. Mathar, Feb 23 2009
-
A027760[n_] := Product[d, {d, Select[ Divisors[n] + 1, PrimeQ]}]; a[n_] := a[n] = A027760[n]*a[n-1]; a[0] = 1; Table[ a[n], {n, 0, 18}] (* Jean-François Alcover, Oct 04 2011 *)
-
a(n) = local(r); r=1; forprime(p=2, n+1, r*=p^(n\(p-1))); r
\\ Franklin T. Adams-Watters, May 31 2010
-
from math import prod
from sympy import primerange
def A091137(n): return prod(p**(n//(p-1)) for p in primerange(n+2))
# Chai Wah Wu, Apr 28 2023
-
def a(n): return lcm(product(r + 1 for r in p) for p in Partitions(n))
# Or, more efficient:
from functools import cache
@cache
def a_rec(n):
if n == 0: return 1
p = mul(s for s in map(lambda i: i + 1, divisors(n)) if is_prime(s))
return p * a_rec(n - 1)
print([a_rec(n) for n in range(22)]) # Peter Luschny, Dec 12 2023
New name using a formula of the author by
Peter Luschny, Dec 11 2023
A074141
Sum of products of parts increased by 1 in all partitions of n.
Original entry on oeis.org
1, 2, 7, 18, 50, 118, 301, 684, 1621, 3620, 8193, 17846, 39359, 84198, 181313, 383208, 811546, 1695062, 3546634, 7341288, 15207022, 31261006, 64255264, 131317012, 268336125, 545858260, 1110092387, 2250057282, 4558875555, 9213251118, 18613373708, 37529713890
Offset: 0
The partitions of 4 are 4, 3+1, 2+2, 2+1+1, 1+1+1+1, the corresponding products when parts are increased by 1 are 5,8,9,12,16 and their sum is a(4) = 50.
-
b:= proc(n, i) option remember; `if`(n=0 or i=1,
2^n, b(n, i-1) +(1+i)*b(n-i, min(n-i, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..50); # Alois P. Heinz, Sep 07 2014
-
Table[Plus @@ Times @@@ (IntegerPartitions[n] + 1), {n, 0, 28}] (* T. D. Noe, Nov 01 2011 *)
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, (1+i) * b[n-i, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 08 2015, after Alois P. Heinz *)
-
S(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 07 2014 */
A171080
a(n) = Product_{3 <= p <= 2*n+1, p prime} p^floor(2*n / (p - 1)).
Original entry on oeis.org
1, 3, 45, 945, 14175, 467775, 638512875, 1915538625, 488462349375, 194896477400625, 32157918771103125, 2218896395206115625, 3028793579456347828125, 9086380738369043484375, 3952575621190533915703125, 28304394023345413370350078125, 7217620475953080409439269921875
Offset: 0
- F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer, 3rd. ed., 1966; Lemma 1.5.2, p. 13.
-
f:=proc(n) local q,t1; t1:=1; for q from 3 to 2*n+1 do if isprime(q) then t1:=t1*q^floor(2*n/(q-1)); fi; od; t1; end;
-
a[n_] := Product[If[PrimeQ[q], q^Floor[2 n/(q - 1)], 1], {q, 3, 2 n + 1}]
Table[a[n], {n, 0, 20}] (* Wolfgang Hintze, Oct 03 2014 *)
-
from functools import cache
@cache
def a_rec(n):
if n == 0: return 1
p = mul(s for s in map(lambda i: i+1, divisors(2*n)) if is_prime(s))
return (p * a_rec(n - 1)) // 2
print([a_rec(n) for n in range(17)]) # Peter Luschny, Dec 12 2023
A355026
Irregular table read by rows: the n-th row gives the possible values of the number of divisors of numbers with n prime divisors (counted with multiplicity).
Original entry on oeis.org
1, 2, 3, 4, 4, 6, 8, 5, 8, 9, 12, 16, 6, 10, 12, 16, 18, 24, 32, 7, 12, 15, 16, 20, 24, 27, 32, 36, 48, 64, 8, 14, 18, 20, 24, 30, 32, 36, 40, 48, 54, 64, 72, 96, 128, 9, 16, 21, 24, 25, 28, 36, 40, 45, 48, 60, 64, 72, 80, 81, 96, 108, 128, 144, 192, 256
Offset: 0
Table begins:
1;
2;
3, 4;
4, 6, 8;
5, 8, 9, 12, 16;
6, 10, 12, 16, 18, 24, 32;
7, 12, 15, 16, 20, 24, 27, 32, 36, 48, 64;
8, 14, 18, 20, 24, 30, 32, 36, 40, 48, 54, 64, 72, 96, 128;
...
Numbers k with Omega(k) = 2 are either of the form p^2 with p prime, or of the form p1*p2 with p1 and p2 being distinct primes. The corresponding numbers of divisors are 3 and 4, respectively. Therefore the second row is {3, 4}.
-
row[n_] := Union[Times @@ (# + 1) & /@ IntegerPartitions[n]]; Array[row, 9, 0] // Flatten
-
row(n) = { my (m=Map()); forpart(p=n, mapput(m,prod(k=1, #p, 1+p[k]),0)); Vec(m) } \\ Rémy Sigrist, Jun 17 2022
A238970
The number of nodes at even level in divisor lattice in canonical order.
Original entry on oeis.org
1, 1, 2, 2, 2, 3, 4, 3, 4, 5, 6, 8, 3, 5, 6, 8, 9, 12, 16, 4, 6, 8, 10, 8, 12, 16, 14, 18, 24, 32, 4, 7, 9, 12, 10, 15, 20, 16, 18, 24, 32, 27, 36, 48, 64, 5, 8, 11, 14, 12, 18, 24, 13, 20, 23, 30, 40, 24, 32, 36, 48, 64, 41, 54, 72, 96, 128
Offset: 0
Triangle T(n,k) begins:
1;
1;
2, 2;
2, 3, 4;
3, 4, 5, 6, 8;
3, 5, 6, 8, 9, 12, 16;
4, 6, 8, 10, 8, 12, 16, 14, 18, 24, 32;
...
-
b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
[i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
T:= n-> map(x-> ceil(numtheory[tau](mul(ithprime(i)
^x[i], i=1..nops(x)))/2), b(n$2))[]:
seq(T(n), n=0..9); # Alois P. Heinz, Mar 25 2020
-
A063008row[n_] := Product[Prime[k]^#[[k]], {k, 1, Length[#]}]& /@ IntegerPartitions[n];
A038548[n_] := Ceiling[DivisorSigma[0, n]/2];
T[n_] := A038548 /@ A063008row[n];
Table[T[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Jan 30 2025 *)
-
\\ here b(n) is A038548.
b(n)={ceil(numdiv(n)/2)}
N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
{ for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 25 2020
Offset changed and terms a(50) and beyond from
Andrew Howroyd, Mar 25 2020
A238971
The number of nodes at odd level in divisor lattice in canonical order.
Original entry on oeis.org
0, 1, 1, 2, 2, 3, 4, 2, 4, 4, 6, 8, 3, 5, 6, 8, 9, 12, 16, 3, 6, 7, 10, 8, 12, 16, 13, 18, 24, 32, 4, 7, 9, 12, 10, 15, 20, 16, 18, 24, 32, 27, 36, 48, 64, 4, 8, 10, 14, 12, 18, 24, 12, 20, 22, 30, 40, 24, 32, 36, 48, 64, 40, 54, 72, 96, 128
Offset: 0
Triangle T(n,k) begins:
0;
1;
1, 2;
2, 3, 4;
2, 4, 4, 6, 8;
3, 5, 6, 8, 9, 12, 16;
3, 6, 7, 10, 8, 12, 16, 13, 18, 24, 32;
...
-
b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
[i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
T:= n-> map(x-> floor(numtheory[tau](mul(ithprime(i)
^x[i], i=1..nops(x)))/2), b(n$2))[]:
seq(T(n), n=0..9); # Alois P. Heinz, Mar 25 2020
-
b(n)={numdiv(n)\2}
N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
{ for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 25 2020
Offset changed and terms a(50) and beyond from
Andrew Howroyd, Mar 25 2020
A368093
Cumulative products of the generalized Clausen numbers. Array read by ascending antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 12, 6, 1, 1, 9, 24, 12, 1, 5, 5, 135, 720, 60, 1, 1, 25, 5, 405, 1440, 360, 1, 7, 7, 875, 175, 8505, 60480, 2520, 1, 1, 49, 7, 4375, 175, 127575, 120960, 5040, 1, 1, 1, 343, 49, 21875, 875, 382725, 3628800, 15120
Offset: 0
Array A(m, n) starts:
[0] 1, 1, 2, 6, 12, 60, 360, 2520, ... A048803
[1] 1, 2, 12, 24, 720, 1440, 60480, 120960, ... A091137
[2] 1, 3, 9, 135, 405, 8505, 127575, 382725, ... A368092
[3] 1, 1, 5, 5, 175, 175, 875, 875, ...
[4] 1, 5, 25, 875, 4375, 21875, 765625, 42109375, ...
[5] 1, 1, 7, 7, 49, 49, 3773, 3773, ...
[6] 1, 7, 49, 343, 2401, 184877, 1294139, 117766649, ...
[7] 1, 1, 1, 1, 11, 11, 143, 143, ...
[8] 1, 1, 1, 11, 11, 143, 1573, 1573, ...
[9] 1, 1, 11, 11, 1573, 1573, 17303, 17303, ...
-
from functools import cache
def Clausen(n, k):
return mul(s for s in map(lambda i: i+n, divisors(k)) if is_prime(s))
@cache
def CumProdClausen(m, n):
return Clausen(m, n) * CumProdClausen(m, n - 1) if n > 0 else 1
for m in range(10): print([m], [CumProdClausen(m, n) for n in range(8)])
A368090
Triangle read by rows. T(n, k) = Sum_{p in P(n, k)} Product_{r in p}(r + 1), where P(n, k) are the partitions of n with length k.
Original entry on oeis.org
1, 0, 2, 0, 3, 4, 0, 4, 6, 8, 0, 5, 17, 12, 16, 0, 6, 22, 34, 24, 32, 0, 7, 43, 71, 68, 48, 64, 0, 8, 52, 122, 142, 136, 96, 128, 0, 9, 86, 197, 325, 284, 272, 192, 256, 0, 10, 100, 350, 502, 650, 568, 544, 384, 512
Offset: 0
Triangle T(n, k) starts:
[0] [1]
[1] [0, 2]
[2] [0, 3, 4]
[3] [0, 4, 6, 8]
[4] [0, 5, 17, 12, 16]
[5] [0, 6, 22, 34, 24, 32]
[6] [0, 7, 43, 71, 68, 48, 64]
[7] [0, 8, 52, 122, 142, 136, 96, 128]
[8] [0, 9, 86, 197, 325, 284, 272, 192, 256]
[9] [0, 10, 100, 350, 502, 650, 568, 544, 384, 512]
-
def T(n, k):
return sum(product(r+1 for r in p) for p in Partitions(n, length=k))
for n in range(10): print([T(n, k) for k in range(n + 1)])
Showing 1-8 of 8 results.
Comments