cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A091137 The Hirzebruch numbers. a(n) = Product_{2 <= p <= n+1, p prime} p^floor(n / (p - 1)).

Original entry on oeis.org

1, 2, 12, 24, 720, 1440, 60480, 120960, 3628800, 7257600, 479001600, 958003200, 2615348736000, 5230697472000, 31384184832000, 62768369664000, 32011868528640000, 64023737057280000, 51090942171709440000, 102181884343418880000, 33720021833328230400000, 67440043666656460800000
Offset: 0

Views

Author

Henry Bottomley, Dec 19 2003

Keywords

Comments

Largest number m such that number of times m divides k! is almost k/n for large k, i.e., largest m with A090624(m) = n.
This is always a relatively small multiple of n!, since the multiplicity with which a prime p divides n! is always <= n/(p-1); it is equal to floor(n/(p-1)) at least when n is a power of p. - Franklin T. Adams-Watters, May 31 2010
At least for most small n, a(n) = A002790(n) * n!; the first difference is n=15. It appears that A002790(n) * n! always divides a(n).
Conjecture: The denominators of the series reversion of the sequence with e.g.f. Polylog(2,x). - Benedict W. J. Irwin, Jan 05 2017
Not only is a(n) divisible by n!; a(n) is divisible by (n + 1)! as has been observed by Bedhouche and Bakir (see links and A363596). - Hal M. Switkay, Aug 15 2025

Examples

			Let n = 4. The partitions of 4 are [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]. Thus a(4) = lcm([5, 4*2, 3*3, 3*2*2, 2*2*2*2]) = 720.
		

References

  • P. Curtz, Integration numérique ..., Note 12, C.C.S.A., Arcueil, 1969; see pp. 36, 56.
  • F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer, 3rd. ed., 1966; Lemma 1.7.3, p. 14. [From N. J. A. Sloane, Sep 06 2010]

Crossrefs

Starts similarly to A002207 especially for even n and all values of A002207 seen so far seem to divide a(n).

Programs

  • Maple
    A091137 := proc(n) local a,i,p ; a := 1 ; for i from 1 do p := ithprime(i) ; if p > n+1 then break; fi; a := a*p^floor(n/(p-1)) ; od: a ; end:
    seq(A091137(n), n = 0..47); # R. J. Mathar, Feb 23 2009
  • Mathematica
    A027760[n_] := Product[d, {d, Select[ Divisors[n] + 1, PrimeQ]}]; a[n_] := a[n] = A027760[n]*a[n-1]; a[0] = 1; Table[ a[n], {n, 0, 18}] (* Jean-François Alcover, Oct 04 2011 *)
  • PARI
    a(n) = local(r); r=1; forprime(p=2, n+1, r*=p^(n\(p-1))); r
    \\ Franklin T. Adams-Watters, May 31 2010
    
  • Python
    from math import prod
    from sympy import primerange
    def A091137(n): return prod(p**(n//(p-1)) for p in primerange(n+2))
    # Chai Wah Wu, Apr 28 2023
    
  • SageMath
    def a(n): return lcm(product(r + 1 for r in p) for p in Partitions(n))
    # Or, more efficient:
    from functools import cache
    @cache
    def a_rec(n):
        if n == 0: return 1
        p = mul(s for s in map(lambda i: i + 1, divisors(n)) if is_prime(s))
        return p * a_rec(n - 1)
    print([a_rec(n) for n in range(22)]) # Peter Luschny, Dec 12 2023

Formula

a(n) = Product_p {p prime} p^floor(n/(p-1)).
a(2n+1) = 2*a(2n).
a(n+1) = A027760(n+1)*a(n). - Paul Curtz, Aug 01 2008
From Peter Luschny, Dec 11 2023: (Start)
a(n) = lcm_{p in P(n)} Product_{r in p}(r + 1), where P(n) are the partitions of n.
a(n) = lcm(A238963row(n)).
a(n) = A368116(1, n), seen as the lcm of the product of the 1-shifted partitions.
a(n) = A368093(1, n), seen as the cumulative product of the Clausen numbers A160014(1, n). (End)
a(n) = lcm({k: A275314(k) = n+1}). - Hal M. Switkay, Aug 13 2025
a(n) = (n + 1)! * A363596(n). - Hal M. Switkay, Aug 15 2025

Extensions

New name using a formula of the author by Peter Luschny, Dec 11 2023

A074141 Sum of products of parts increased by 1 in all partitions of n.

Original entry on oeis.org

1, 2, 7, 18, 50, 118, 301, 684, 1621, 3620, 8193, 17846, 39359, 84198, 181313, 383208, 811546, 1695062, 3546634, 7341288, 15207022, 31261006, 64255264, 131317012, 268336125, 545858260, 1110092387, 2250057282, 4558875555, 9213251118, 18613373708, 37529713890
Offset: 0

Views

Author

Amarnath Murthy, Aug 28 2002

Keywords

Comments

Replace each term in A036035 by the number of its divisors as in A074139; sequence gives sum of terms in the n-th row.
This is the sum of the number of submultisets of the multisets with n elements; a part of a partition is a frequency of such an element. - George Beck, Nov 01 2011

Examples

			The partitions of 4 are 4, 3+1, 2+2, 2+1+1, 1+1+1+1, the corresponding products when parts are increased by 1 are 5,8,9,12,16 and their sum is a(4) = 50.
		

Crossrefs

Row sums of A074139 and of A079025 and of A079308 and of A238963.
Column k=2 of A261718.
Cf. A267008.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1,
          2^n, b(n, i-1) +(1+i)*b(n-i, min(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50); # Alois P. Heinz, Sep 07 2014
  • Mathematica
    Table[Plus @@ Times @@@ (IntegerPartitions[n] + 1), {n, 0, 28}] (* T. D. Noe, Nov 01 2011 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, (1+i) * b[n-i, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 08 2015, after Alois P. Heinz *)
  • Maxima
    S(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 07 2014 */

Formula

G.f.: 1/Product_{m>0} (1-(m+1)*x^m).
a(n) = 1/n*Sum_{k=1..n} b(k)*a(n-k), where b(k) = Sum_{d divides k} d*(d+1)^(k/d).
a(n) = S(n,1), where S(n,m) = sum(k=m..n/2, (k+1)*S(n-k,k))+(n+1), S(n,n)=n+1, S(0,m)=1, S(n,m)=0 for nVladimir Kruchinin, Sep 07 2014
a(n) ~ c * 2^n, where c = Product_{k>=2} 1/(1-(k+1)/2^k) = 18.56314656361011472747535423226928404842588594722907068201... = A256155. - Vaclav Kotesovec, Sep 11 2014, updated May 10 2021

Extensions

More terms from Alford Arnold, Sep 17 2002
More terms, better description and formulas from Vladeta Jovovic, Vladimir Baltic, Nov 28 2002

A171080 a(n) = Product_{3 <= p <= 2*n+1, p prime} p^floor(2*n / (p - 1)).

Original entry on oeis.org

1, 3, 45, 945, 14175, 467775, 638512875, 1915538625, 488462349375, 194896477400625, 32157918771103125, 2218896395206115625, 3028793579456347828125, 9086380738369043484375, 3952575621190533915703125, 28304394023345413370350078125, 7217620475953080409439269921875
Offset: 0

Views

Author

N. J. A. Sloane, Sep 06 2010

Keywords

References

  • F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer, 3rd. ed., 1966; Lemma 1.5.2, p. 13.

Crossrefs

Programs

  • Maple
    f:=proc(n) local q,t1; t1:=1; for q from 3 to 2*n+1 do if isprime(q) then t1:=t1*q^floor(2*n/(q-1)); fi; od; t1; end;
  • Mathematica
    a[n_] := Product[If[PrimeQ[q], q^Floor[2 n/(q - 1)], 1], {q, 3, 2 n + 1}]
    Table[a[n], {n, 0, 20}] (* Wolfgang Hintze, Oct 03 2014 *)
  • SageMath
    from functools import cache
    @cache
    def a_rec(n):
        if n == 0: return 1
        p = mul(s for s in map(lambda i: i+1, divisors(2*n)) if is_prime(s))
        return (p * a_rec(n - 1)) // 2
    print([a_rec(n) for n in range(17)])  # Peter Luschny, Dec 12 2023

Formula

From Peter Luschny, Dec 12 2023: (Start)
a(n) = (Clausen(2*n)*a(n-1))/2 for n > 0, where Clausen(n) = A160014(1, n).
a(n) = A091137(2*n) / 2^(2*n). (End)

A355026 Irregular table read by rows: the n-th row gives the possible values of the number of divisors of numbers with n prime divisors (counted with multiplicity).

Original entry on oeis.org

1, 2, 3, 4, 4, 6, 8, 5, 8, 9, 12, 16, 6, 10, 12, 16, 18, 24, 32, 7, 12, 15, 16, 20, 24, 27, 32, 36, 48, 64, 8, 14, 18, 20, 24, 30, 32, 36, 40, 48, 54, 64, 72, 96, 128, 9, 16, 21, 24, 25, 28, 36, 40, 45, 48, 60, 64, 72, 80, 81, 96, 108, 128, 144, 192, 256
Offset: 0

Views

Author

Amiram Eldar, Jun 16 2022

Keywords

Comments

First differs from A074139 at the 8th row.
The n-th row begins with n+1, which corresponds to powers of primes, and ends with 2^n, which corresponds to squarefree numbers.
The n-th row contains the distinct values of the n-th row of A238963.

Examples

			Table begins:
  1;
  2;
  3, 4;
  4, 6, 8;
  5, 8, 9, 12, 16;
  6, 10, 12, 16, 18, 24, 32;
  7, 12, 15, 16, 20, 24, 27, 32, 36, 48, 64;
  8, 14, 18, 20, 24, 30, 32, 36, 40, 48, 54, 64, 72, 96, 128;
  ...
Numbers k with Omega(k) = 2 are either of the form p^2 with p prime, or of the form p1*p2 with p1 and p2 being distinct primes. The corresponding numbers of divisors are 3 and 4, respectively. Therefore the second row is {3, 4}.
		

Crossrefs

Programs

  • Mathematica
    row[n_] := Union[Times @@ (# + 1) & /@ IntegerPartitions[n]]; Array[row, 9, 0] // Flatten
  • PARI
    row(n) = { my (m=Map()); forpart(p=n, mapput(m,prod(k=1, #p, 1+p[k]),0)); Vec(m) } \\ Rémy Sigrist, Jun 17 2022

A238970 The number of nodes at even level in divisor lattice in canonical order.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 4, 3, 4, 5, 6, 8, 3, 5, 6, 8, 9, 12, 16, 4, 6, 8, 10, 8, 12, 16, 14, 18, 24, 32, 4, 7, 9, 12, 10, 15, 20, 16, 18, 24, 32, 27, 36, 48, 64, 5, 8, 11, 14, 12, 18, 24, 13, 20, 23, 30, 40, 24, 32, 36, 48, 64, 41, 54, 72, 96, 128
Offset: 0

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  1;
  2, 2;
  2, 3, 4;
  3, 4, 5,  6, 8;
  3, 5, 6,  8, 9, 12, 16;
  4, 6, 8, 10, 8, 12, 16, 14, 18, 24, 32;
  ...
		

Crossrefs

Cf. A238957 in canonical order.
Leftmost column gives A008619.
Last terms of rows give A011782.

Programs

  • Maple
    b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
        [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
    T:= n-> map(x-> ceil(numtheory[tau](mul(ithprime(i)
            ^x[i], i=1..nops(x)))/2), b(n$2))[]:
    seq(T(n), n=0..9);  # Alois P. Heinz, Mar 25 2020
  • Mathematica
    A063008row[n_] := Product[Prime[k]^#[[k]], {k, 1, Length[#]}]& /@ IntegerPartitions[n];
    A038548[n_] := Ceiling[DivisorSigma[0, n]/2];
    T[n_] := A038548 /@ A063008row[n];
    Table[T[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Jan 30 2025 *)
  • PARI
    \\ here b(n) is A038548.
    b(n)={ceil(numdiv(n)/2)}
    N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
    Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 25 2020

Formula

From Andrew Howroyd, Mar 25 2020: (Start)
T(n,k) = A038548(A063008(n,k)).
T(n,k) = A238963(n,k) - A238971(n,k).
T(n,k) = ceiling(A238963(n,k)/2). (End)

Extensions

Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 25 2020

A238971 The number of nodes at odd level in divisor lattice in canonical order.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 4, 2, 4, 4, 6, 8, 3, 5, 6, 8, 9, 12, 16, 3, 6, 7, 10, 8, 12, 16, 13, 18, 24, 32, 4, 7, 9, 12, 10, 15, 20, 16, 18, 24, 32, 27, 36, 48, 64, 4, 8, 10, 14, 12, 18, 24, 12, 20, 22, 30, 40, 24, 32, 36, 48, 64, 40, 54, 72, 96, 128
Offset: 0

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Examples

			Triangle T(n,k) begins:
  0;
  1;
  1, 2;
  2, 3, 4;
  2, 4, 4,  6, 8;
  3, 5, 6,  8, 9, 12, 16;
  3, 6, 7, 10, 8, 12, 16, 13, 18, 24, 32;
  ...
		

Crossrefs

Cf. A238958 in canonical order.

Programs

  • Maple
    b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
        [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
    T:= n-> map(x-> floor(numtheory[tau](mul(ithprime(i)
            ^x[i], i=1..nops(x)))/2), b(n$2))[]:
    seq(T(n), n=0..9);  # Alois P. Heinz, Mar 25 2020
  • PARI
    b(n)={numdiv(n)\2}
    N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
    Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 25 2020

Formula

From Andrew Howroyd, Mar 25 2020: (Start)
T(n,k) = A056924(A063008(n,k)).
T(n,k) = A238963(n,k) - A238970(n,k).
T(n,k) = floor(A238963(n,k)/2). (End)

Extensions

Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 25 2020

A368093 Cumulative products of the generalized Clausen numbers. Array read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 12, 6, 1, 1, 9, 24, 12, 1, 5, 5, 135, 720, 60, 1, 1, 25, 5, 405, 1440, 360, 1, 7, 7, 875, 175, 8505, 60480, 2520, 1, 1, 49, 7, 4375, 175, 127575, 120960, 5040, 1, 1, 1, 343, 49, 21875, 875, 382725, 3628800, 15120
Offset: 0

Views

Author

Peter Luschny, Dec 12 2023

Keywords

Comments

A160014 are the generalized Clausen numbers, for m = 0 the formula computes the cumulative radical A048803, and for m = 1 the Hirzebruch numbers A091137.

Examples

			Array A(m, n) starts:
  [0] 1, 1,  2,   6,   12,     60,     360,      2520, ...  A048803
  [1] 1, 2, 12,  24,  720,   1440,   60480,    120960, ...  A091137
  [2] 1, 3,  9, 135,  405,   8505,  127575,    382725, ...  A368092
  [3] 1, 1,  5,   5,  175,    175,     875,       875, ...
  [4] 1, 5, 25, 875, 4375,  21875,  765625,  42109375, ...
  [5] 1, 1,  7,   7,   49,     49,    3773,      3773, ...
  [6] 1, 7, 49, 343, 2401, 184877, 1294139, 117766649, ...
  [7] 1, 1,  1,   1,   11,     11,     143,       143, ...
  [8] 1, 1,  1,  11,   11,    143,    1573,      1573, ...
  [9] 1, 1, 11,  11, 1573,   1573,   17303,     17303, ...
		

Crossrefs

Cf. A160014, A048803 (m=0), A091137 (m=1), A368092 (m=2).

Programs

  • SageMath
    from functools import cache
    def Clausen(n, k):
        return mul(s for s in map(lambda i: i+n, divisors(k)) if is_prime(s))
    @cache
    def CumProdClausen(m, n):
        return Clausen(m, n) * CumProdClausen(m, n - 1) if n > 0 else 1
    for m in range(10): print([m], [CumProdClausen(m, n) for n in range(8)])

Formula

A(m, n) = A160014(m, n) * A(m, n - 1) for n > 0 and A(m, 0) = 1.

A368090 Triangle read by rows. T(n, k) = Sum_{p in P(n, k)} Product_{r in p}(r + 1), where P(n, k) are the partitions of n with length k.

Original entry on oeis.org

1, 0, 2, 0, 3, 4, 0, 4, 6, 8, 0, 5, 17, 12, 16, 0, 6, 22, 34, 24, 32, 0, 7, 43, 71, 68, 48, 64, 0, 8, 52, 122, 142, 136, 96, 128, 0, 9, 86, 197, 325, 284, 272, 192, 256, 0, 10, 100, 350, 502, 650, 568, 544, 384, 512
Offset: 0

Views

Author

Peter Luschny, Dec 11 2023

Keywords

Examples

			Triangle T(n, k) starts:
  [0] [1]
  [1] [0,  2]
  [2] [0,  3,   4]
  [3] [0,  4,   6,   8]
  [4] [0,  5,  17,  12,  16]
  [5] [0,  6,  22,  34,  24,  32]
  [6] [0,  7,  43,  71,  68,  48,  64]
  [7] [0,  8,  52, 122, 142, 136,  96, 128]
  [8] [0,  9,  86, 197, 325, 284, 272, 192, 256]
  [9] [0, 10, 100, 350, 502, 650, 568, 544, 384, 512]
		

Crossrefs

Cf. A238963, A368091, A074141 (row sums).

Programs

  • SageMath
    def T(n, k):
        return sum(product(r+1 for r in p) for p in Partitions(n, length=k))
    for n in range(10): print([T(n, k) for k in range(n + 1)])
Showing 1-8 of 8 results.