cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A238958 The number of nodes at odd level in divisor lattice in graded colexicographic order.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 4, 2, 4, 4, 6, 8, 3, 5, 6, 8, 9, 12, 16, 3, 6, 7, 8, 10, 12, 13, 16, 18, 24, 32, 4, 7, 9, 10, 12, 15, 16, 18, 20, 24, 27, 32, 36, 48, 64, 4, 8, 10, 12, 12, 14, 18, 20, 22, 24, 24, 30, 32, 36, 40, 40, 48, 54, 64, 72, 96, 128
Offset: 0

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Examples

			Triangle T(n,k) begins:
  0;
  1;
  1, 2;
  2, 3, 4;
  2, 4, 4, 6,  8;
  3, 5, 6, 8,  9, 12, 16;
  3, 6, 7, 8, 10, 12, 13, 16, 18, 24, 32;
  ...
		

Crossrefs

Cf. A056924 in graded colexicographic order.

Programs

  • PARI
    \\ here b(n) is A056924.
    b(n)={numdiv(n)\2}
    N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
    Row(n)={apply(s->b(N(s)), [Vecrev(p) | p<-partitions(n)])}
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Apr 01 2020

Formula

T(n,k) = A056924(A036035(n,k)).
From Andrew Howroyd, Apr 01 2020: (Start)
T(n,k) = A074139(n,k) - A238957(n,k).
T(n,k) = floor(A074139(n,k)/2). (End)

Extensions

Offset changed and terms a(50) and beyond from Andrew Howroyd, Apr 01 2020

A238970 The number of nodes at even level in divisor lattice in canonical order.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 4, 3, 4, 5, 6, 8, 3, 5, 6, 8, 9, 12, 16, 4, 6, 8, 10, 8, 12, 16, 14, 18, 24, 32, 4, 7, 9, 12, 10, 15, 20, 16, 18, 24, 32, 27, 36, 48, 64, 5, 8, 11, 14, 12, 18, 24, 13, 20, 23, 30, 40, 24, 32, 36, 48, 64, 41, 54, 72, 96, 128
Offset: 0

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  1;
  2, 2;
  2, 3, 4;
  3, 4, 5,  6, 8;
  3, 5, 6,  8, 9, 12, 16;
  4, 6, 8, 10, 8, 12, 16, 14, 18, 24, 32;
  ...
		

Crossrefs

Cf. A238957 in canonical order.
Leftmost column gives A008619.
Last terms of rows give A011782.

Programs

  • Maple
    b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
        [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
    T:= n-> map(x-> ceil(numtheory[tau](mul(ithprime(i)
            ^x[i], i=1..nops(x)))/2), b(n$2))[]:
    seq(T(n), n=0..9);  # Alois P. Heinz, Mar 25 2020
  • Mathematica
    A063008row[n_] := Product[Prime[k]^#[[k]], {k, 1, Length[#]}]& /@ IntegerPartitions[n];
    A038548[n_] := Ceiling[DivisorSigma[0, n]/2];
    T[n_] := A038548 /@ A063008row[n];
    Table[T[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Jan 30 2025 *)
  • PARI
    \\ here b(n) is A038548.
    b(n)={ceil(numdiv(n)/2)}
    N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
    Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 25 2020

Formula

From Andrew Howroyd, Mar 25 2020: (Start)
T(n,k) = A038548(A063008(n,k)).
T(n,k) = A238963(n,k) - A238971(n,k).
T(n,k) = ceiling(A238963(n,k)/2). (End)

Extensions

Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 25 2020
Showing 1-2 of 2 results.