cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A168659 Number of partitions of n such that the number of parts is divisible by the greatest part. Also number of partitions of n such that the greatest part is divisible by the number of parts.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 6, 6, 8, 9, 14, 16, 22, 25, 33, 39, 51, 60, 79, 92, 116, 137, 174, 204, 254, 300, 368, 435, 530, 625, 760, 896, 1076, 1267, 1518, 1780, 2121, 2484, 2946, 3444, 4070, 4749, 5594, 6514, 7637, 8879, 10384, 12043, 14040, 16255
Offset: 1

Views

Author

Vladeta Jovovic, Dec 02 2009

Keywords

Examples

			a(5)=3 because in the partitions [1,1,1,1,1], [1,1,1,2], [1,1,3] the number of parts is divisible by the greatest part; not true for the partitions [1,2,2],[2,3], [1,4], and [5]. - _Emeric Deutsch_, Dec 04 2009
From _Gus Wiseman_, Feb 08 2021: (Start)
The a(1) = 1 through a(10) = 9 partitions of the first type:
  1  11  21   22    311    321     322      332       333        4222
         111  1111  2111   2211    331      2222      4221       4321
                    11111  111111  2221     4211      4311       4411
                                   4111     221111    51111      52111
                                   211111   311111    222111     222211
                                   1111111  11111111  321111     322111
                                                      21111111   331111
                                                      111111111  22111111
                                                                 1111111111
The a(1) = 1 through a(11) = 14 partitions of the second type (A=10, B=11):
  1   2   3    4    5     6     7      8      9       A       B
          21   22   41    42    43     44     63      64      65
                    311   321   61     62     81      82      83
                                322    332    333     622     A1
                                331    611    621     631     632
                                4111   4211   4221    4222    641
                                              4311    4321    911
                                              51111   4411    4322
                                                      52111   4331
                                                              4421
                                                              8111
                                                              52211
                                                              53111
                                                              611111
(End)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The case of equality is A047993 (A106529).
The Heinz numbers of these partitions are A340609/A340610.
If all parts (not just the greatest) are divisors we get A340693 (A340606).
The strict case in the second interpretation is A340828 (A340856).
A006141 = partitions whose length equals their minimum (A324522).
A067538 = partitions whose length/max divides their sum (A316413/A326836).
A200750 = partitions with length coprime to maximum (A340608).
Row sums of A350879.

Programs

  • Maple
    a := proc (n) local pn, ct, j: with(combinat): pn := partition(n): ct := 0: for j to numbpart(n) do if `mod`(nops(pn[j]), max(seq(pn[j][i], i = 1 .. nops(pn[j])))) = 0 then ct := ct+1 else end if end do: ct end proc: seq(a(n), n = 1 .. 50); # Emeric Deutsch, Dec 04 2009
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Divisible[Length[#],Max[#]]&]],{n,30}] (* Gus Wiseman, Feb 08 2021 *)
    nmax = 100; s = 0; Do[s += Normal[Series[Sum[x^((m+1)*k - 1) * Product[(1 - x^(m*k + j - 1))/(1 - x^j), {j, 1, k-1}], {k, 1, (1 + nmax)/(1 + m) + 1}], {x, 0, nmax}]], {m, 1, nmax}]; Rest[CoefficientList[s, x]] (* Vaclav Kotesovec, Oct 18 2024 *)

Formula

G.f.: Sum_{i>=1} Sum_{j>=1} x^((i+1)*j-1) * Product_{k=1..j-1} (1-x^(i*j+k-1))/(1-x^k). - Seiichi Manyama, Jan 24 2022
a(n) ~ c * exp(Pi*sqrt(2*n/3)) / n^(3/2), where c = 0.04628003... - Vaclav Kotesovec, Nov 16 2024

Extensions

Extended by Emeric Deutsch, Dec 04 2009

A168656 Number of partitions of n such that the smallest part is divisible by the number of parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 5, 6, 7, 7, 8, 10, 11, 13, 15, 18, 20, 23, 25, 29, 33, 36, 41, 47, 53, 58, 66, 74, 83, 92, 103, 116, 130, 144, 160, 179, 199, 219, 243, 269, 298, 328, 362, 399, 441, 484, 533, 586, 645, 708, 778, 854, 937, 1026, 1124, 1230, 1347, 1470, 1607, 1756, 1917, 2089
Offset: 1

Views

Author

Vladeta Jovovic, Dec 01 2009, Dec 04 2009

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[Sum[x^(k^2)/((1 - x^(k^2))*Product[1 - x^j, {j, 1, k-1}]), {k, 1, Sqrt[nmax]}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Oct 16 2024 *)
    Table[Count[IntegerPartitions[n],?(Mod[#[[-1]],Length[#]]==0&)],{n,70}] (* _Harvey P. Dale, Dec 22 2024 *)
  • PARI
    N=100; x='x+O('x^N);
    Vec( sum(k=1,sqrtint(N), x^(k^2)/(1-x^(k^2)) / prod(i=1,k-1, 1-x^i) ) )

Formula

G.f.: Sum_{k>=1} x^(k^2)/((1-x^(k^2)) * Product_{i=1..k-1} (1-x^i)).
a(n) ~ c * exp(2*Pi*sqrt(n/15)) / n^(3/4), where c = 1 / (2 * 3^(1/4) * sqrt(5) * phi^(3/2)) = 0.08255116908... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 17 2024

A168657 Number of partitions of n such that the number of parts is divisible by the smallest part.

Original entry on oeis.org

1, 1, 2, 4, 6, 8, 12, 17, 25, 34, 48, 64, 87, 114, 151, 198, 258, 332, 428, 546, 695, 879, 1108, 1388, 1737, 2159, 2680, 3312, 4082, 5009, 6138, 7492, 9126, 11081, 13429, 16228, 19575, 23547, 28277, 33879, 40520, 48354, 57615, 68509, 81337, 96388, 114055
Offset: 1

Views

Author

Vladeta Jovovic, Dec 02 2009

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember;
          `if`(n<1, 0, `if`(i=1, 1, `if`(i<1, 0,
          `if`(irem(n, i)=0 and irem(t+n/i, i)=0, 1, 0)+
                add(b(n-i*j, i-1, t+j), j=0..n/i))))
        end:
    a:= n-> b(n, n, 0):
    seq(a(n), n=1..60);  # Alois P. Heinz, May 24 2012
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n<1, 0, If[i==1, 1, If[i<1, 0, If [Mod[n, i]==0 && Mod[t+n/i, i]==0, 1, 0] + Sum[b[n-i*j, i-1, t+j], {j, 0, n/i}]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jul 01 2015, after Alois P. Heinz *)
    Table[Count[IntegerPartitions[n],?(Mod[Length[#],#[[-1]]]==0&)],{n,50}] (* _Harvey P. Dale, Jul 16 2025 *)
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(i=1, N, sum(j=1, sqrtint(N\i), x^(i*j^2)/prod(k=1, i*j-1, 1-x^k)))) \\ Seiichi Manyama, Jan 21 2022

Formula

G.f.: Sum_{n>=1} Sum_{d|n} x^(n*d)/Product_{k=1..n-1}(1-x^k).
G.f.: Sum_{i>=1} Sum_{j>=1} x^(i*j^2)/Product_{k=1..i*j-1} (1-x^k). - Seiichi Manyama, Jan 21 2022
From Vaclav Kotesovec, Oct 17 2024: (Start)
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)) * (1 - (sqrt(3/2)/Pi + 13*Pi / (2^(7/2) * 3^(3/2))) / sqrt(n)).
A000041(n) - a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (3 * 2^(7/2) * n^(3/2)). (End)

A079501 Number of compositions of the integer n with strictly smallest part in the first position.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 8, 12, 19, 28, 45, 70, 110, 173, 275, 436, 695, 1107, 1769, 2831, 4537, 7276, 11683, 18774, 30194, 48592, 78247, 126062, 203192, 327645, 528518, 852815, 1376491, 2222294, 3588628, 5796196, 9363458, 15128631, 24447014, 39510108
Offset: 1

Views

Author

Arnold Knopfmacher, Jan 21 2003

Keywords

Comments

Also number of compositions of n such that the first part is divisible by the number of parts . [Vladeta Jovovic, Dec 02 2009]

Examples

			The a(9)=19 such compositions of 9 are
[ 1]  [ 1 2 2 2 2 ]
[ 2]  [ 1 2 2 4 ]
[ 3]  [ 1 2 3 3 ]
[ 4]  [ 1 2 4 2 ]
[ 5]  [ 1 2 6 ]
[ 6]  [ 1 3 2 3 ]
[ 7]  [ 1 3 3 2 ]
[ 8]  [ 1 3 5 ]
[ 9]  [ 1 4 2 2 ]
[10]  [ 1 4 4 ]
[11]  [ 1 5 3 ]
[12]  [ 1 6 2 ]
[13]  [ 1 8 ]
[14]  [ 2 3 4 ]
[15]  [ 2 4 3 ]
[16]  [ 2 7 ]
[17]  [ 3 6 ]
[18]  [ 4 5 ]
[19]  [ 9 ]
- _Joerg Arndt_, Jan 01 2013
		

References

  • Arnold Knopfmacher and Neville Robbins, Compositions with parts constrained by the leading summand, Ars Combin. 76 (2005), 287-295.

Crossrefs

Cf. A168655, A168656, A168657. [From Vladeta Jovovic, Dec 02 2009]

Programs

  • Maple
    b:= proc(n, s) option remember; `if`(n=0, 1, add(
          `if`(n-j>0 and n-j<=s, 0, b(n-j, s)), j=s+1..n))
        end:
    a:= n-> 1 +add(b(n-j, j), j=1..n/2):
    seq(a(n), n=1..60);  # Alois P. Heinz, Apr 29 2014
  • Mathematica
    b[n_, s_] := b[n, s] = If[n == 0, 1, Sum[ If[n - j > 0 && n - j <= s, 0, b[n - j, s]], {j, s + 1, n}]]; a[n_] := 1 + Sum[b[n - j, j], {j, 1, n/2}]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jan 16 2015, after Alois P. Heinz *)

Formula

G.f.: Sum_{k>=1} (1-z)*z^k/(1-z-z^(k+1)).
G.f.: Sum_{k>=1} z^(2*k-1)/((1-z^k)*(1-z)^(k-1)), cf. A105039. - Vladeta Jovovic, Apr 05 2005
a(n) ~ 1/sqrt(5) * ((1+sqrt(5))/2)^(n-2). - Vaclav Kotesovec, May 01 2014
G.f.: Sum_{n>=1} q^n/(1-Sum_{k>=n+1} q^k). - Joerg Arndt, Jan 03 2024

Extensions

More terms from Benoit Cloitre, Jan 21 2003

A177498 a(n) is the maximal positive integer m for which exponents of prime(n) and prime(n+1) in the prime power factorization of m! are both powers of 2.

Original entry on oeis.org

20, 98, 54, 38, 152, 94, 68, 260, 154, 332, 696, 386, 234, 476, 1002, 548, 1138, 2342, 656, 1342, 746, 800, 1648, 3332, 1750, 3530, 1852, 1016, 2158, 2226, 8904, 1250, 9684, 2566, 2668, 5378, 2838, 2940, 11634, 3076, 12414, 6368, 12804, 3382, 3586, 7358, 14754
Offset: 3

Views

Author

Vladimir Shevelev, May 10 2010

Keywords

Comments

For n=2 the corresponding value is not known; moreover, we do not know if this value is finite (in any case, it is not less than 524306). See also comment to A177458.
If a(2) exists, then it is at least 81129638414606681695789005144146. - Charles R Greathouse IV, Apr 10 2012

Crossrefs

Programs

Formula

The maximal m with the considered property is in interval [q, 2*(-1+q^2*(log(2)/(2*log(q)-1)+1))), where q=prime(n+1).

Extensions

Extended by T. D. Noe, Apr 10 2012
Showing 1-5 of 5 results.