A366157 The number of lit cells in weakly decreasing partitions of n when light shines from the north west. Here partitions are represented from left to right by columns of cells.
1, 4, 8, 17, 27, 49, 74, 118, 174, 263, 371, 540, 747, 1048, 1429, 1954, 2610, 3513, 4631, 6123, 7978, 10398, 13397, 17277, 22054, 28131, 35605, 45004, 56502, 70879, 88370, 110033, 136325, 168612, 207637, 255308, 312689, 382373, 466004, 566979, 687685, 832793, 1005654
Offset: 1
Keywords
References
- A. Blecher, A. Knopfmacher, and M. E. Mays, Casting light on integer partitions, preprint.
Programs
-
Mathematica
T[r_, s_] := If[s > r, 0, If[s == 0, 1, If[r == 1 && s == 1, q, If[r == 2 && s == 1, q*(1 + q), q^s*Sum[T[r - 1, i], {i, 0, s}]]]]]; nmax = 15; Do[Print[SeriesCoefficient[Sum[PartitionsP[n]*q^n - Sum[T[r, s], {s, 0, r}], {r, 0, n}], {q, 0, n}]], {n, 1, nmax}] (* Vaclav Kotesovec, Oct 04 2023 *)
-
PARI
a(n) = {my(res = 0); forpart(p = n, res+=qlit(p)); res} qlit(v) = {my(res = v[#v], h = v[#v]-1); forstep(i = #v-1, 1, -1, res+=max(0, v[i]-h); h = max(h, v[i])-1); res} \\ David A. Corneth, Oct 04 2023
Formula
G.f.: Sum_{k>=0} (P(q)-T_q(k))
where P(q) is the partition g.f. Product_{i>=1} 1/(1-q^i)
and T_q(k)=Sum_{s=0..k} t[k,s] with t[r,s]=q^s*Sum_{i=0..s} t[r-1,i]
and initial conditions t[1,1]=q; t[2,1]=q(1+q); t[r,0]=1; t[r,s]=0 for s>r.
a(n) <= n * A000041(n). - David A. Corneth, Oct 04 2023
Extensions
a(13)-a(15) from Vaclav Kotesovec, Oct 04 2023
More terms from David A. Corneth, Oct 04 2023
Comments