cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A325189 Regular triangle read by rows where T(n,k) is the number of integer partitions of n with maximum origin-to-boundary graph-distance equal to k.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 2, 0, 0, 0, 3, 2, 0, 0, 0, 3, 2, 2, 0, 0, 0, 1, 6, 2, 2, 0, 0, 0, 0, 7, 4, 2, 2, 0, 0, 0, 0, 6, 8, 4, 2, 2, 0, 0, 0, 0, 4, 12, 6, 4, 2, 2, 0, 0, 0, 0, 1, 15, 12, 6, 4, 2, 2, 0, 0, 0, 0, 0, 17, 15, 10, 6, 4, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Comments

The maximum origin-to-boundary graph-distance of an integer partition is one plus the maximum number of unit steps East or South in the Young diagram that can be followed, starting from the upper-left square, to reach a boundary square in the lower-right quadrant. It is also the side-length of the minimum triangular partition containing the diagram.

Examples

			Triangle begins:
  1
  0  1
  0  0  2
  0  0  1  2
  0  0  0  3  2
  0  0  0  3  2  2
  0  0  0  1  6  2  2
  0  0  0  0  7  4  2  2
  0  0  0  0  6  8  4  2  2
  0  0  0  0  4 12  6  4  2  2
  0  0  0  0  1 15 12  6  4  2  2
  0  0  0  0  0 17 15 10  6  4  2  2
  0  0  0  0  0 14 23 16 10  6  4  2  2
  0  0  0  0  0 10 30 23 14 10  6  4  2  2
  0  0  0  0  0  5 39 29 24 14 10  6  4  2  2
  0  0  0  0  0  1 42 42 31 22 14 10  6  4  2  2
Row 9 counts the following partitions:
  (432)   (54)     (63)      (72)       (81)        (9)
  (3321)  (333)    (621)     (711)      (21111111)  (111111111)
  (4221)  (441)    (6111)    (2211111)
  (4311)  (522)    (222111)  (3111111)
          (531)    (321111)
          (3222)   (411111)
          (5211)
          (22221)
          (32211)
          (33111)
          (42111)
          (51111)
		

Crossrefs

Programs

  • Mathematica
    otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Table[Length[Select[IntegerPartitions[n],otbmax[#]==k&]],{n,0,15},{k,0,n}]
  • PARI
    row(n)={my(r=vector(n+1)); forpart(p=n, my(w=0); for(i=1, #p, w=max(w,#p-i+p[i])); r[w+1]++); r} \\ Andrew Howroyd, Jan 12 2024

Formula

Sum_{k=1..n} k*T(n,k) = A366157(n). - Andrew Howroyd, Jan 12 2024

A325200 Regular triangle read by rows where T(n,k) is the number of integer partitions of n such that the difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram is k.

Original entry on oeis.org

1, 1, 0, 0, 2, 0, 1, 0, 2, 0, 0, 3, 0, 2, 0, 0, 3, 2, 0, 2, 0, 1, 0, 6, 2, 0, 2, 0, 0, 4, 3, 4, 2, 0, 2, 0, 0, 6, 2, 6, 4, 2, 0, 2, 0, 0, 4, 9, 5, 4, 4, 2, 0, 2, 0, 1, 0, 15, 6, 8, 4, 4, 2, 0, 2, 0, 0, 5, 12, 12, 9, 6, 4, 4, 2, 0, 2, 0, 0, 10, 6, 21, 10, 12, 6, 4, 4, 2, 0, 2, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Examples

			Triangle begins:
  1
  1  0
  0  2  0
  1  0  2  0
  0  3  0  2  0
  0  3  2  0  2  0
  1  0  6  2  0  2  0
  0  4  3  4  2  0  2  0
  0  6  2  6  4  2  0  2  0
  0  4  9  5  4  4  2  0  2  0
  1  0 15  6  8  4  4  2  0  2  0
  0  5 12 12  9  6  4  4  2  0  2  0
  0 10  6 21 10 12  6  4  4  2  0  2  0
  0 10 12 20 18 13 10  6  4  4  2  0  2  0
  0  5 27 20 23 16 16 10  6  4  4  2  0  2  0
  1  0 38 22 32 22 19 14 10  6  4  4  2  0  2  0
  0  6 34 38 34 35 20 22 14 10  6  4  4  2  0  2  0
  0 15 22 57 44 40 34 23 20 14 10  6  4  4  2  0  2  0
  0 20 20 71 55 54 45 32 26 20 14 10  6  4  4  2  0  2  0
  0 15 43 70 71 66 60 44 35 24 20 14 10  6  4  4  2  0  2  0
  0  6 74 64 99 83 70 65 42 38 24 20 14 10  6  4  4  2  0  2  0
Row n = 9 counts the following partitions (empty columns not shown):
  (432)   (333)    (54)      (63)      (72)       (81)        (9)
  (3321)  (441)    (621)     (6111)    (711)      (21111111)  (111111111)
  (4221)  (522)    (22221)   (222111)  (2211111)
  (4311)  (531)    (51111)   (411111)  (3111111)
          (3222)   (321111)
          (5211)
          (32211)
          (33111)
          (42111)
		

Crossrefs

Row sums are A000041. Column k = 1 is A325191. Column k = 2 is A325199.
T(n,k) = A325189(n,k) - A325188(n,k).

Programs

  • Mathematica
    otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Table[Length[Select[IntegerPartitions[n],otbmax[#]-otb[#]==k&]],{n,0,20},{k,0,n}]
  • PARI
    row(n)={my(r=vector(n+1)); forpart(p=n, my(b=#p,c=0); for(i=1, #p, my(x=#p-i+p[i]); b=min(b,x); c=max(c,x)); r[c-b+1]++); r} \\ Andrew Howroyd, Jan 12 2024

Formula

Sum_{k=1..n} k*T(n,k) = A366157(n) - A368986(n). - Andrew Howroyd, Jan 13 2024

A366175 The number of lit cells in weakly decreasing partitions of n when light shines from the north west and only the first column is lit. Here partitions are represented from left to right by columns of cells.

Original entry on oeis.org

1, 2, 5, 7, 15, 22, 35, 54, 86, 115, 175, 248, 351, 480, 662, 890, 1229, 1622, 2154, 2820, 3718, 4814, 6269, 8048, 10303, 13086, 16648, 20998, 26540, 33196, 41509, 51607, 64086, 79162, 97769, 120213, 147587, 180401, 220173, 267697, 325211, 393778, 476237
Offset: 1

Views

Author

Arnold Knopfmacher, Oct 03 2023

Keywords

References

  • A. Blecher, A. Knopfmacher, and M. E. Mays, Casting light on integer partitions, preprint.

Crossrefs

Programs

  • Mathematica
    T[r_, s_] := If[s > r, 0, If[s == 0, 1, If[r == 1 && s == 1, q, If[r == 2 && s == 1, q*(1 + q), q^s*Sum[T[r - 1, i], {i, 0, s}]]]]]; nmax = 15; Rest[CoefficientList[Series[Sum[(r + 1)*q^(r + 1)*Sum[T[r, s], {s, 0, r}], {r, 0, nmax}], {q, 0, nmax}], q]] (* Vaclav Kotesovec, Oct 04 2023 *)

Formula

G.f.: Sum_{r>=0} (r+1)*q^(r+1)*T_q(r) where T_q(k) = Sum_{s=0..k} t(k,s) with t(r,s) = q^s*Sum_{i=0..s} t(r-1,i) and initial conditions t(1,1) = q; t(2,1) = q(1+q); t(r,0) = 1; t(r,s) = 0 for s>r.

Extensions

a(14)-a(16) from Vaclav Kotesovec, Oct 04 2023
a(17)-a(43) from Alois P. Heinz, Oct 04 2023

A372768 The number of shaded cells in all compositions of n when light shines from the northwest. Here compositions are represented by stacked columns of adjacent cells.

Original entry on oeis.org

0, 1, 4, 13, 34, 85, 199, 454, 1011, 2220, 4813, 10351, 22104, 46948, 99266, 209113
Offset: 1

Views

Author

Michael Mays, May 12 2024

Keywords

Examples

			For n=4, the composition 1+3 produces 3 shaded cells, 2+2 produces 1, 3+1 produces 2, 1+1+2 produces 1, 4 produces 6, and the others have no shaded cells, for a total of 13, so a(4) = 13.
		

Crossrefs

Cf. A366157.
Showing 1-4 of 4 results.