cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A331332 Sparse ruler statistics: T(n,k) (0 <= k <= n) is the number of rulers with length n where the length of the first segment appears k times. Triangle read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 4, 3, 0, 1, 0, 8, 4, 3, 0, 1, 0, 14, 9, 4, 4, 0, 1, 0, 26, 16, 12, 4, 5, 0, 1, 0, 46, 34, 21, 15, 5, 6, 0, 1, 0, 85, 64, 45, 28, 20, 6, 7, 0, 1, 0, 155, 124, 90, 64, 36, 27, 7, 8, 0, 1, 0, 286, 236, 183, 128, 90, 48, 35, 8, 9, 0, 1, 0, 528, 452, 361, 269, 185, 126, 63, 44, 9, 10, 0, 1
Offset: 0

Views

Author

Peter Luschny, Jan 24 2020

Keywords

Comments

A sparse ruler, or simply a ruler, is a strict increasing finite sequence of nonnegative integers starting from 0 called marks. See A103294 for more definitions.

Examples

			Triangle starts:
[ 0][1]
[ 1][0,   1]
[ 2][0,   1,   1]
[ 3][0,   3,   0,  1]
[ 4][0,   4,   3,  0,  1]
[ 5][0,   8,   4,  3,  0,  1]
[ 6][0,  14,   9,  4,  4,  0,  1]
[ 7][0,  26,  16, 12,  4,  5,  0, 1]
[ 8][0,  46,  34, 21, 15,  5,  6, 0, 1]
[ 9][0,  85,  64, 45, 28, 20,  6, 7, 0, 1]
[10][0, 155, 124, 90, 64, 36, 27, 7, 8, 0, 1]
		

Crossrefs

Columns k=0-1 give: A000007, A331330.
Row sums give A011782.
Row sums over even columns give A331609 (for n>0).
Row sums over odd columns give A331606 (for n>0).
T(2n,n) gives A332051.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, x, add(expand(
         `if`(i=j, x, 1)*b(n-j, `if`(n (p-> seq(coeff(p, x, i), i=0..degree(p)))(
                `if`(n=0, 1, add(b(n-j, j), j=1..n))):
    seq(T(n), n=0..12);  # Alois P. Heinz, Feb 06 2020
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, x, Sum[Expand[If[i == j, x, 1] b[n - j, If[n < i + j, 0, i]]], {j, 1, n}]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ If[n == 0, 1, Sum[b[n - j, j], {j, 1, n}]]];
    T /@ Range[0, 12] // Flatten (* Jean-François Alcover, Nov 08 2020, after Alois P. Heinz *)
  • SageMath
    def A331332_row(n):
        if n == 0: return [1]
        L = [0 for k in (0..n)]
        for c in Compositions(n):
            L[list(c).count(c[0])] += 1
        return L
    for n in (0..10): print(A331332_row(n))

Formula

Sum_{k=1..n} k * T(n,k) = A175656(n-1) for n>0. - Alois P. Heinz, Feb 07 2020

A331606 Number of compositions of n with the multiplicity of the first part odd.

Original entry on oeis.org

1, 1, 4, 4, 12, 18, 44, 72, 158, 288, 604, 1146, 2332, 4528, 9126, 17944, 35940, 71130, 142132, 282344, 563630, 1121936, 2239060, 4462530, 8906236, 17764160, 35458774, 70761520, 141272876, 282025466, 563159588, 1124543256, 2245918406, 4485670168, 8960061076
Offset: 1

Views

Author

Arnold Knopfmacher, Jan 22 2020

Keywords

Examples

			For n=3, a(4)=4 as we count 4, 3+1, 1+3 and 2+1+1.
		

Crossrefs

Cf. A011782, A331609 (similar, with even).

Programs

  • Maple
    b:= proc(n, p, t) option remember; `if`(n=0, t,
          add(b(n-j, p, `if`(p=j, 1-t, t)), j=1..n))
        end:
    a:= n-> add(b(n-j, j, 1), j=1..n):
    seq(a(n), n=1..38);  # Alois P. Heinz, Jan 23 2020
  • Mathematica
    gf[x_] := x/(2 (1 - 2 x)) + Sum[(1 - x) x^i/(2 (-2 x^(i + 1) + 2 x^i - 2 x + 1))  , {i, 1, 40}]; CL := CoefficientList[Series[gf[x], {x, 0, 35}], x];
    Drop[CL, 1] (* Peter Luschny, Jan 23 2020 *)

Formula

G.f.: Sum_{i>=1} (1-x)*x^i/(2*(-2*x^(i+1)+2*x^i-2*x+1)) + x/(2*(1-2*x)).
a(n) = A011782(n) - A331609(n). - Alois P. Heinz, Jan 23 2020
Showing 1-2 of 2 results.