A331332 Sparse ruler statistics: T(n,k) (0 <= k <= n) is the number of rulers with length n where the length of the first segment appears k times. Triangle read by rows.
1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 4, 3, 0, 1, 0, 8, 4, 3, 0, 1, 0, 14, 9, 4, 4, 0, 1, 0, 26, 16, 12, 4, 5, 0, 1, 0, 46, 34, 21, 15, 5, 6, 0, 1, 0, 85, 64, 45, 28, 20, 6, 7, 0, 1, 0, 155, 124, 90, 64, 36, 27, 7, 8, 0, 1, 0, 286, 236, 183, 128, 90, 48, 35, 8, 9, 0, 1, 0, 528, 452, 361, 269, 185, 126, 63, 44, 9, 10, 0, 1
Offset: 0
Examples
Triangle starts: [ 0][1] [ 1][0, 1] [ 2][0, 1, 1] [ 3][0, 3, 0, 1] [ 4][0, 4, 3, 0, 1] [ 5][0, 8, 4, 3, 0, 1] [ 6][0, 14, 9, 4, 4, 0, 1] [ 7][0, 26, 16, 12, 4, 5, 0, 1] [ 8][0, 46, 34, 21, 15, 5, 6, 0, 1] [ 9][0, 85, 64, 45, 28, 20, 6, 7, 0, 1] [10][0, 155, 124, 90, 64, 36, 27, 7, 8, 0, 1]
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, x, add(expand( `if`(i=j, x, 1)*b(n-j, `if`(n (p-> seq(coeff(p, x, i), i=0..degree(p)))( `if`(n=0, 1, add(b(n-j, j), j=1..n))): seq(T(n), n=0..12); # Alois P. Heinz, Feb 06 2020
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, x, Sum[Expand[If[i == j, x, 1] b[n - j, If[n < i + j, 0, i]]], {j, 1, n}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ If[n == 0, 1, Sum[b[n - j, j], {j, 1, n}]]]; T /@ Range[0, 12] // Flatten (* Jean-François Alcover, Nov 08 2020, after Alois P. Heinz *)
-
SageMath
def A331332_row(n): if n == 0: return [1] L = [0 for k in (0..n)] for c in Compositions(n): L[list(c).count(c[0])] += 1 return L for n in (0..10): print(A331332_row(n))
Formula
Sum_{k=1..n} k * T(n,k) = A175656(n-1) for n>0. - Alois P. Heinz, Feb 07 2020
Comments