cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A015723 Number of parts in all partitions of n into distinct parts.

Original entry on oeis.org

1, 1, 3, 3, 5, 8, 10, 13, 18, 25, 30, 40, 49, 63, 80, 98, 119, 149, 179, 218, 266, 318, 380, 455, 541, 640, 760, 895, 1050, 1234, 1442, 1679, 1960, 2272, 2635, 3052, 3520, 4054, 4669, 5359, 6142, 7035, 8037, 9170, 10460, 11896, 13517, 15349, 17394, 19691
Offset: 1

Views

Author

Keywords

Examples

			The strict integer partitions of 6 are {(6), (5,1), (4,2), (3,2,1)} with a total of 1 + 2 + 2 + 3 = 8 parts, so a(6) = 8. - _Gus Wiseman_, May 09 2019
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
          add((l->[l[1], l[2]+l[1]*j])(b(n-i*j, i-1)), j=0..min(n/i, 1))))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=1..50);  # Alois P. Heinz, Feb 27 2013
  • Mathematica
    nn=50; Rest[CoefficientList[Series[D[Product[1+y x^i,{i,1,nn}],y]/.y->1,{x,0,nn}],x]]  (* Geoffrey Critzer, Oct 29 2012; fixed by Vaclav Kotesovec, Apr 16 2016 *)
    q[n_, k_] := q[n, k] = If[nVaclav Kotesovec, Apr 16 2016 *)
    Table[Length[Join@@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,1,50}] (* Gus Wiseman, May 09 2019 *)
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i<1, {0, 0},
       Sum[{#[[1]], #[[2]] + #[[1]]*j}&@ b[n-i*j, i-1], {j, 0, Min[n/i, 1]}]]];
    a[n_] := b[n, n][[2]];
    Array[a, 50] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)
  • PARI
    N=66;  q='q+O('q^N); gf=sum(n=0,N, n*q^(n*(n+1)/2) / prod(k=1,n, 1-q^k ) );
    Vec(gf) /* Joerg Arndt, Oct 20 2012 */

Formula

G.f.: sum(k>=1, x^k/(1+x^k) ) * prod(m>=1, 1+x^m ). Convolution of A048272 and A000009. - Vladeta Jovovic, Nov 26 2002
G.f.: sum(k>=1, k*x^(k*(k+1)/2)/prod(i=1..k, 1-x^i ) ). - Vladeta Jovovic, Sep 21 2005
a(n) = A238131(n)+A238132(n) = sum_{k=1..n} A048272(k)*A000009(n-k). - Mircea Merca, Feb 26 2014
a(n) = Sum_{k>=1} k*A008289(n,k). - Vaclav Kotesovec, Apr 16 2016
a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(n/3)) / (2 * Pi * n^(1/4)). - Vaclav Kotesovec, May 19 2018
For n > 0, a(n) = A116676(n) + A116680(n). - Vaclav Kotesovec, May 26 2018

Extensions

Extended and corrected by Naohiro Nomoto, Feb 24 2002

A067619 Total number of parts in all self-conjugate partitions of n. Also, sum of largest parts of all self-conjugate partitions of n.

Original entry on oeis.org

0, 1, 0, 2, 2, 3, 3, 4, 7, 8, 9, 10, 15, 16, 18, 23, 30, 32, 35, 42, 51, 59, 63, 73, 89, 100, 106, 125, 145, 160, 174, 198, 229, 255, 274, 310, 355, 388, 420, 472, 534, 582, 631, 701, 784, 859, 928, 1021, 1144, 1243, 1338, 1475, 1630, 1767, 1909, 2089, 2299
Offset: 0

Views

Author

Naohiro Nomoto, Feb 01 2002

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Sum[n*q^(2n-1)*Product[1+q^k, {k, 1, 2n-3, 2}], {n, 1, 30}], {q, 0, 60}], q]

Formula

G.f.: A(q) = Sum_{n >= 1} n*q^(2*n-1)*(1+q)*(1+q^3)*...*(1+q^(2*n-3)).
From Peter Bala, Aug 20 2017: (Start)
Let F(q) = Product_{i >= 1} (1 + q^(2*i-1)). Then A(q) = Sum_{n >= 0} ( F(q) - Product_{i = 1..n} (1 + q^(2*i-1)) ).
It follows that the above sum A(q) satisfies -A(q-1) = 1 + q + 3*q^2 + 12*q^3 + 61*q^4 + ..., the g.f. for A158691, row-Fishburn matrices of size n. (End)

Extensions

Edited by Dean Hickerson, Feb 11 2002

A238131 Number of parts in all partitions of n into odd number of distinct parts.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 4, 4, 7, 10, 13, 16, 22, 25, 31, 42, 48, 59, 73, 89, 108, 132, 156, 190, 227, 271, 318, 380, 449, 526, 618, 722, 841, 980, 1138, 1321, 1526, 1760, 2028, 2333, 2683, 3070, 3517, 4017, 4584, 5228, 5948, 6757, 7673, 8696, 9845, 11132, 12577
Offset: 0

Views

Author

Mircea Merca, Feb 18 2014

Keywords

Examples

			a(8)=7 because the partitions of 8 into odd number of distinct parts are: 8, 5+2+1 and 4+3+1.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, (p->
          [p[2], p[1], p[4]+p[2], p[3]+p[1]])(b(n-i, i-1)))))
        end:
    a:= n-> b(n$2)[4]:
    seq(a(n), n=0..50);  # Alois P. Heinz, Dec 27 2015
  • Mathematica
    max = 50; s = (1/2)*Product[1+x^k, {k, 1, max}]*Sum[x^k/(1+x^k), {k, 1, max}] + (1/2)*Product[1-x^k, {k, 1, max}]*Sum[x^k/(1-x^k), {k, 1, max}] + O[x]^(max+1); CoefficientList[s, x] (* Jean-François Alcover, Dec 27 2015 *)

Formula

a(n) = (1/2)*A015723(n)+(1/2)*sum{k=0..A235963(n)-1, (-1)^A110654(k)*A000005(n-A001318(k))}.
G.f.: (1/2)*prod(k>=1, 1+x^k ) * sum(k>=1, x^k/(1+x^k) ) + (1/2)*prod(k>=1, 1-x^k) * sum(k>=1, x^k/(1-x^k) ).
a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, May 27 2018

A116422 Triangle read by rows: T(n,k) is the number of self-conjugate partitions of n having Durfee square of size k (n>=1; 1<=k<=floor(sqrt(n))).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 2, 0, 3, 0, 1, 0, 3, 0, 4, 0, 1, 1, 0, 4, 0, 0, 4, 0, 1, 1, 0, 5, 0, 0, 5, 0, 2, 1, 0, 7, 0, 0, 5, 0, 3, 1, 0, 8, 0, 0, 6, 0, 5, 1, 0, 10, 0, 1, 0, 6, 0, 6, 0, 1, 0, 12, 0, 1, 0, 7, 0, 9, 0, 1, 0, 14, 0, 2, 0, 7, 0, 11, 0, 1, 0, 16
Offset: 1

Views

Author

Emeric Deutsch, Feb 14 2006

Keywords

Comments

Row n contains floor(sqrt(n)) terms (0's are possible even at the end of the rows). Row sums yield A000700. Sum_{k=1..floor(sqrt(n))} k*T(n,k) = A079499(n).
Also, number of partitions of n into k distinct odd parts. Example: T(13,3)=2 because we have [9,3,1] and [7,5,1]. - Emeric Deutsch, Feb 24 2006

Examples

			T(13,3)=2 because we have [5,3,3,1,1] and [4,4,3,2] (there is one more self-conjugate partition of 13, namely [7,1,1,1,1,1,1], having Durfee square of size 1).
Triangle starts:
1;
0;
1;
0,1;
1,0;
0,1;
1,0;
0,2;
1,0,1;
0,2,0;
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
  • G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).

Crossrefs

Programs

  • Maple
    g:=sum(t^k*q^(k^2)/product(1-q^(2*i),i=1..k),k=1..15): gser:=simplify(series(g,q=0,40)): for n from 1 to 33 do P[n]:=coeff(gser,q^n) od: for n from 1 to 33 do row[n]:=seq(coeff(P[n],t^j),j=1..floor(sqrt(n))) od; # yields sequence in triangular form
  • Mathematica
    rows = 31; jmax = Floor[Sqrt[rows]]; T[n_, k_] := SeriesCoefficient[Sum[ t^j*x^(j^2)/Product[1-x^(2i), {i, 1, j}], {j, 1, jmax}], {x, 0, n}, {t, 0, k}]; Table[T[n, k], {n, 1, rows}, {k, 1, Floor[Sqrt[n]]}] // Flatten (* Jean-François Alcover, Jul 16 2017 *)

Formula

G.f.: Sum_{k=1..infinity} (t^k*x^(k^2))/Product_{i=1..k} 1-x^(2*i).
G.f.: -1 + Product_{j=1..infinity} 1+t*x^(2*j-1). - Emeric Deutsch, Feb 24 2006
T(n, k) = T(n-2*k, k) + T(n-2*k+1, k-1). If n+k is even, T(n, k) = A008284((n-k^2)/2 + k, k) = A072233((n-k^2)/2, k); 0 otherwise. - Álvar Ibeas, Jul 27 2020

A097936 Total number of parts in all compositions of n into distinct odd parts.

Original entry on oeis.org

1, 0, 1, 4, 1, 4, 1, 8, 19, 8, 19, 12, 37, 12, 55, 112, 73, 112, 91, 212, 127, 308, 145, 504, 781, 600, 817, 892, 1453, 1084, 2089, 1472, 3343, 1760, 4579, 6564, 6433, 6948, 8287, 11944, 11341, 16744, 14395, 26156, 18667, 35468, 22921, 53712, 64273, 67440
Offset: 1

Views

Author

Vladeta Jovovic, Sep 05 2004

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(n>(i+1)^2/4, [][], zip((x, y)->x+y, [b(n, i-2)],
          `if`(i>n, [], [0, b(n-i, i-2)]), 0)[]))
        end:
    a:= proc(n) option remember; local l; l:=[b(n, n-1+irem(n,2))];
          add(i*l[i+1]*i!, i=1..nops(l)-1)
        end:
    seq (a(n), n=1..60);  # Alois P. Heinz, Nov 20 2012
  • Mathematica
    Drop[ CoefficientList[ Series[Sum[k*k!*x^k^2/Product[1 - x^(2j), {j, 1, k}], {k, 1, 55}], {x, 0, 50}], x], 1] (* Robert G. Wilson v, Sep 08 2004 *)

Formula

Sum_{k>0} (k*k!*x^(k^2)/Product_{j=1..k} (1-x^(2*j))).

Extensions

More terms from Robert G. Wilson v, Sep 08 2004
Showing 1-5 of 5 results.